首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   209篇
  免费   19篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2019年   5篇
  2018年   4篇
  2017年   6篇
  2016年   9篇
  2015年   14篇
  2014年   10篇
  2013年   17篇
  2012年   21篇
  2011年   14篇
  2010年   10篇
  2009年   4篇
  2008年   18篇
  2007年   19篇
  2006年   13篇
  2005年   13篇
  2004年   7篇
  2003年   8篇
  2002年   6篇
  2001年   3篇
  1999年   2篇
  1998年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1979年   2篇
  1975年   2篇
  1971年   1篇
排序方式: 共有228条查询结果,搜索用时 15 毫秒
141.
We studied dipeptidyl peptidase IV (DPP-IV, CD26) expression in different T helper cells and serum soluble DPP-IV/sCD26 levels in rheumatoid arthritis (RA) patients, correlated these with disease activity score (DAS), and examined how they were affected by different therapies, conventional or biological (anti-TNF, anti-CD20 and anti-IL6R or Ig-CTLA4). The percentage of CD4+CD45R0+CD26- cells was greatly reduced in patients (up to 50%) when compared with healthy subjects. Three other subsets of CD4 cells, including a CD26high Th1-associated population, changed variably with therapies. Data from these subsets (frequency and staining density) significantly correlated with DAS28 or DAS28 components but different in each group of patients undergoing the different therapies. Th17 and Th22 subsets were implicated in RA as independent CCR4+ and CCR4- populations each, with distinct CD26 expression, and were targeted with varying efficiency by each therapy. Serum DPP-IV activity rather than sCD26 levels was lower in RA patients compared to healthy donors. DPP-IV and sCD26 serum levels were found related to specific T cell subsets but not to disease activity. We conclude that, according to their CD26 expression, different cell subsets could serve to monitor RA course, and an uncharacterized T helper CD26- subset, not targeted by therapies, should be monitored for early diagnosis.  相似文献   
142.
143.
Iron is an important nutrient in N2-fixing legume nodules. The demand for this micronutrient increases during the symbiosis establishment, where the metal is utilized for the synthesis of various iron-containing proteins in both the plant and the bacteroid. Unfortunately, in spite of its importance, iron is poorly available to plant uptake since its solubility is very low when in its oxidized form Fe(III). In the present study, the effect of iron deficiency on the activity of some proteins involved in Strategy I response, such as Fe-chelate reductase (FC-R), H+-ATPase, and phosphoenolpyruvate carboxylase (PEPC) and the protein level of iron regulated transporter (IRT1) and H+-ATPase proteins has been investigated in both roots and nodules of a tolerant (Flamingo) and a susceptible (Coco blanc) cultivar of common bean plants. The main results of this study show that the symbiotic tolerance of Flamingo can be ascribed to a greater increase in the FC-R and H+-ATPase activities in both roots and nodules, leading to a more efficient Fe supply to nodulating tissues. The strong increase in PEPC activity and organic acid content, in the Flamingo root nodules, suggests that under iron deficiency nodules can modify their metabolism in order to sustain those activities necessary to acquire Fe directly from the soil solution.  相似文献   
144.
How anti-neoplastic agents induce MDR (multidrug resistance) in cancer cells and the role of GSH (glutathione) in the activation of pumps such as the MRPs (MDR-associated proteins) are still open questions. In the present paper we illustrate that a doxorubicin-resistant human colon cancer cell line (HT29-DX), exhibiting decreased doxorubicin accumulation, increased intracellular GSH content, and increased MRP1 and MRP2 expression in comparison with doxorubicin-sensitive HT29 cells, shows increased activity of the PPP (pentose phosphate pathway) and of G6PD (glucose-6-phosphate dehydrogenase). We observed the onset of MDR in HT29 cells overexpressing G6PD which was accompanied by an increase in GSH. The G6PD inhibitors DHEA (dehydroepiandrosterone) and 6-AN (6-aminonicotinamide) reversed the increase of G6PD and GSH and inhibited MDR both in HT29-DX cells and in HT29 cells overexpressing G6PD. In our opinion, these results suggest that the activation of the PPP and an increased activity of G6PD are necessary to some MDR cells to keep the GSH content high, which is in turn necessary to extrude anticancer drugs out of the cell. We think that our data provide a new further mechanism for GSH increase and its effects on MDR acquisition.  相似文献   
145.
Background aimsWe evaluated the therapeutic potential of injection of in vitro differentiated bone marrow mesenchymal stromal cells (MSC) using a swine model.Methods and ResultsMyocardial infarction was induced by coronary occlusion. Three groups (n = 5 each) were analyzed: one group received an injection of 17.8 ± 9.3 × 106 5-azacytidine-treated allogeneic MSC 1 month after infarction; a placebo group received an injection of medium; and controls were kept untreated. After 4 weeks, heart samples were taken from three infarcted areas, interventricular septa, ventricles and atria. Gene expression profiles of genes related to contractility (Serca2a), fibrosis (Col1a1), cardiomyogenesis (Mef2c, Gata4 and Nkx2.5) and mobilization of stem cells (Sdf1, Cxcr4 and c-kit) were compared by quantitative real-time PCR (qRT-PCR). Gene expression profiles varied in different heart areas. Thus Serca2a expression was reduced in infarcted groups in all heart regions except for the left ventricles, where Col1a1 was overexpressed. The expression of genes related to cardiomyogenesis decreased in the infarcted zones and left atria compared with healthy hearts. Interestingly, increased expression of Cxcr4 was detected in infarcted regions of MSC-treated pigs compared with the placebo groupConclusionsInfarction induced changes in expression of genes involved in various biologic processes. Genes involved in cardiomyogenesis were downregulated in the left atrium. The intracoronary injection of MSC resulted in localized changes in the expression of Cxcr4.  相似文献   
146.
The pathogenesis of adhesions following primary tendon repair is poorly understood, but is thought to involve dysregulation of matrix metalloproteinases (Mmps). We have previously demonstrated that Mmp9 gene expression is increased during the inflammatory phase following murine flexor digitorum (FDL) tendon repair in association with increased adhesions. To further investigate the role of Mmp9, the cellular, molecular, and biomechanical features of healing were examined in WT and Mmp9(-/-) mice using the FDL tendon repair model. Adhesions persisted in WT, but were reduced in Mmp9(-/-) mice by 21 days without any decrease in strength. Deletion of Mmp9 resulted in accelerated expression of neo-tendon associated genes, Gdf5 and Smad8, and delayed expression of collagen I and collagen III. Furthermore, WT bone marrow cells (GFP(+)) migrated specifically to the tendon repair site. Transplanting myeloablated Mmp9(-/-) mice with WT marrow cells resulted in greater adhesions than observed in Mmp9(-/-) mice and similar to those seen in WT mice. These studies show that Mmp9 is primarily derived from bone marrow cells that migrate to the repair site, and mediates adhesion formation in injured tendons. Mmp9 is a potential target to limit adhesion formation in tendon healing.  相似文献   
147.
Tuberculosis (TB), a chronic infectious disease, is a major cause of morbidity and mortality worldwide. Expression of iNOS and consequent production of NO during the inflammatory process is an important defense mechanism against TB bacteria. We have tested whether pulmonary TB patients undergoing anti-tuberculosis treatment present DNA damage, and whether this damage is related to oxidative stress, by evaluating total hydrophilic antioxidant capacity and iNOS expression. DNA damage in peripheral blood mononuclear cells from patients and healthy tuberculin test (PPD) positive controls was evaluated by single-cell gel electrophoresis (comet assay), and iNOS expression was measured by qPCR. We also evaluated total hydrophilic antioxidant capacity in plasma from patients and controls. Compared to controls, pulmonary TB patients under treatment presented increased DNA damage, which diminished during treatment. Also, the antioxidant capacity of these individuals was increased at the start of treatment, and reduced during treatment. TB patients showed lower iNOS expression, but expression tended to increase during treatment. Our results indicate that pulmonary TB patients under anti-TB treatment exhibit elevated DNA damage in peripheral blood mononuclear cells. This damage was not related to nitric oxide but may be due to other free radicals.  相似文献   
148.
The demand for iron in leguminous plants increases during symbiosis, as the metal is utilised for the synthesis of various Fe-containing proteins in both plant and bacteroids. However, the acquisition of this micronutrient is problematic due to its low bioavailability at physiological pH under aerobic conditions. Induction of root Fe(III)-reductase activity is necessary for Fe uptake and can be coupled to the rhizosphere acidification capacity linked to the H+-ATPase activity. Fe uptake is related to the expression of a Fe2+ transporter (IRT1). In order to verify the possible role of nodules in the acquisition of Fe directly from the soil solution, the localization of H+-ATPase and IRT1 was carried out in common bean nodules by immuno-histochemical analysis. The results showed that these proteins were particularly abundant in the central nitrogen-fixing zone of nodules, around the periphery of infected and uninfected cells as well as in the vascular bundle of control nodules. Under Fe deficiency an over-accumulation of H+-ATPase and IRT1 proteins was observed especially around the cortex cells of nodules. The results obtained in this study suggest that the increase in these proteins is differentially localized in nodules of Fe-deficient plants when compared to the Fe-sufficient condition and cast new light on the possible involvement of nodules in the direct acquisition of Fe from the nutrient solution.  相似文献   
149.
Peripheral resistance to insulin action is the major mechanism causing the metabolic syndrome and eventually type 2 diabetes mellitus. The metabolic derangement associated with insulin resistance is extensive and not restricted to carbohydrates. The branched-chain amino acids (BCAAs) are particularly responsive to the inhibitory insulin action on amino acid release by skeletal muscle and their metabolism is profoundly altered in conditions featuring insulin resistance, insulin deficiency, or both. Obesity, the metabolic syndrome and diabetes mellitus display a gradual increase in the plasma concentration of BCAAs, from the obesity-related low-grade insulin-resistant state to the severe deficiency of insulin action in diabetes ketoacidosis. Obesity-associated hyperinsulinemia succeeds in maintaining near-normal or slightly elevated plasma concentration of BCAAs, despite the insulin-resistant state. The low circulating levels of insulin and/or the deeper insulin resistance occurring in diabetes mellitus are associated with more marked elevation in the plasma concentration of BCAAs. In diabetes ketoacidosis, the increase in plasma BCAAs is striking, returning to normal when adequate metabolic control is achieved. The metabolism of BCAAs is also disturbed in other situations typically featuring insulin resistance, including kidney and liver dysfunction. However, notwithstanding the insulin-resistant state, the plasma level of BCAAs in these conditions is lower than in healthy subjects, suggesting that these organs are involved in maintaining BCAAs blood concentration. The pathogenesis of the decreased BCAAs plasma level in kidney and liver dysfunction is unclear, but a decreased afflux of these amino acids into the blood stream has been observed.  相似文献   
150.
Antarctic environments can sustain a great diversity of well-adapted microorganisms known as psychrophiles or psychrotrophs. The potential of these microorganisms as a resource of enzymes able to maintain their activity and stability at low temperature for technological applications has stimulated interest in exploration and isolation of microbes from this extreme environment. Enzymes produced by these organisms have a considerable potential for technological applications because they are known to have higher enzymatic activities at lower temperatures than their mesophilic and thermophilic counterparts. A total of 518 Antarctic microorganisms, were isolated during Antarctic expeditions organized by the Instituto Antártico Uruguayo. Samples of particules suspended in air, ice, sea and freshwater, soil, sediment, bird and marine animal faeces, dead animals, algae, plants, rocks and microbial mats were collected from different sites in maritime Antarctica. We report enzymatic activities present in 161 microorganisms (120 bacteria, 31 yeasts and 10 filamentous fungi) isolated from these locations. Enzymatic performance was evaluated at 4 and 20°C. Most of yeasts and bacteria grew better at 20°C than at 4°C, however the opposite was observed with the fungi. Amylase, lipase and protease activities were frequently found in bacterial strains. Yeasts and fungal isolates typically exhibited lipase, celullase and gelatinase activities. Bacterial isolates with highest enzymatic activities were identified by 16S rDNA sequence analysis as Pseudomonas spp., Psychrobacter sp., Arthrobacter spp., Bacillus sp. and Carnobacterium sp. Yeasts and fungal strains, with multiple enzymatic activities, belonged to Cryptococcus victoriae, Trichosporon pullulans and Geomyces pannorum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号