首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   248篇
  免费   18篇
  2022年   4篇
  2021年   9篇
  2020年   4篇
  2019年   7篇
  2018年   4篇
  2017年   7篇
  2016年   5篇
  2015年   16篇
  2014年   14篇
  2013年   5篇
  2012年   33篇
  2011年   13篇
  2010年   10篇
  2009年   10篇
  2008年   11篇
  2007年   19篇
  2006年   13篇
  2005年   9篇
  2004年   9篇
  2003年   22篇
  2002年   9篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   6篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
  1981年   4篇
  1980年   1篇
  1974年   2篇
  1972年   1篇
排序方式: 共有266条查询结果,搜索用时 15 毫秒
191.
192.
193.
The lack of antiviral innate immune responses during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is characterized by limited production of interferons (IFNs). One protein associated with Aicardi–Goutières syndrome, SAMHD1, has been shown to negatively regulate the IFN-1 signaling pathway. However, it is unclear whether elevated IFN signaling associated with genetic loss of SAMHD1 would affect SARS-CoV-2 replication. In this study, we established in vitro tissue culture model systems for SARS-CoV-2 and human coronavirus OC43 infections in which SAMHD1 protein expression was absent as a result of CRISPR–Cas9 gene KO or lentiviral viral protein X–mediated proteosomal degradation. We show that both SARS-CoV-2 and human coronavirus OC43 replications were suppressed in SAMHD1 KO 293T and differentiated THP-1 macrophage cell lines. Similarly, when SAMHD1 was degraded by virus-like particles in primary monocyte-derived macrophages, we observed lower levels of SARS-CoV-2 RNA. The loss of SAMHD1 in 293T and differentiated THP-1 cells resulted in upregulated gene expression of IFNs and innate immunity signaling proteins from several pathways, with STAT1 mRNA being the most prominently elevated ones. Furthermore, SARS-CoV-2 replication was significantly increased in both SAMHD1 WT and KO cells when expression and phosphorylation of STAT1 were downregulated by JAK inhibitor baricitinib, which over-rode the activated antiviral innate immunity in the KO cells. This further validates baricitinib as a treatment of SARS-CoV-2–infected patients primarily at the postviral clearance stage. Overall, our tissue culture model systems demonstrated that the elevated innate immune response and IFN activation upon genetic loss of SAMHD1 effectively suppresses SARS-CoV-2 replication.  相似文献   
194.
Many cells can generate complementary traveling waves of actin filaments (F-actin) and cytoskeletal regulators. This phenomenon, termed cortical excitability, results from coupled positive and negative feedback loops of cytoskeletal regulators. The nature of these feedback loops, however, remains poorly understood. We assessed the role of the Rho GAP RGA-3/4 in the cortical excitability that accompanies cytokinesis in both frog and starfish. RGA-3/4 localizes to the cytokinetic apparatus, “chases” Rho waves in an F-actin–dependent manner, and when coexpressed with the Rho GEF Ect2, is sufficient to convert the normally quiescent, immature Xenopus oocyte cortex into a dramatically excited state. Experiments and modeling show that changing the ratio of RGA-3/4 to Ect2 produces cortical behaviors ranging from pulses to complex waves of Rho activity. We conclude that RGA-3/4, Ect2, Rho, and F-actin form the core of a versatile circuit that drives a diverse range of cortical behaviors, and we demonstrate that the immature oocyte is a powerful model for characterizing these dynamics.  相似文献   
195.
New modifications to the scaffold of previously reported HBV capsid assembly effectors such as BAY 41-4109, HAP-12 and GLS4 were explored. The anti-HBV activity in the HepAD38 system, and cytotoxicity profiles of each of the new compounds has been assessed. Among them, five new iodo- and bromo-heteroarylpyrimidines analogs displayed anti-HBV activity in the low micromolar range.  相似文献   
196.
In this study, a hydrocyclone (HC) especially designed for mammalian cell separation was applied for the separation of Chinese hamster ovary cells. The effect of key features on the separation efficiency, such as type of pumphead in the peristaltic feed pump, use of an auxiliary pump to control the perfusate flow rate, and tubing size in the recirculation loop were evaluated in batch separation tests. Based on these preliminary batch tests, the HC was then integrated to 50-L disposable bioreactor bags. Three perfusion runs were performed, including one where perfusion was started from a low-viability late fed-batch culture, and viability was restored. The successive runs allowed optimization of the HC-bag configuration, and cultivations with 20–25 days duration at cell concentrations up to 50 × 106 cells/ml were performed. Separation efficiencies up to 96% were achieved at pressure drops up to 2.5 bar, with no issues of product retention. To our knowledge, this is the first report in literature of high cell densities obtained with a HC integrated to a disposable perfusion bioreactor.  相似文献   
197.
Thirty novel α- and β-d-2'-deoxy-2'-fluoro-2'-C-methyl-7-deazapurine nucleoside analogs were synthesized and evaluated for in vitro antiviral activity. Several α- and β-7-deazapurine nucleoside analogs exhibited modest anti-HCV activity and cytotoxicity. Four synthesized 7-deazapurine nucleoside phosphoramidate prodrugs (18-21) showed no anti-HCV activity, whereas the nucleoside triphosphates (22-24) demonstrated potent inhibitory effects against both wild-type and S282T mutant HCV polymerases. Cellular pharmacology studies in Huh-7 cells revealed that the 5'-triphosphates were not formed at significant levels from either the nucleoside or the phosphoramidate prodrugs, indicating that insufficient phosphorylation was responsible for the lack of anti-HCV activity. Evaluation of anti-HIV-1 activity revealed that an unusual α-form of 7-carbomethoxyvinyl substituted nucleoside (10) had good anti-HIV-1 activity (EC(50)=0.71±0.25 μM; EC(90)=9.5±3.3 μM) with no observed cytotoxicity up to 100 μM in four different cell lines.  相似文献   
198.

Background

Dengue is a disease of great complexity, due to interactions between humans, mosquitoes and various virus serotypes as well as efficient vector survival strategies. Thus, understanding the factors influencing the persistence of the disease has been a challenge for scientists and policy makers. The aim of this study is to investigate the influence of various factors related to humans and vectors in the maintenance of viral transmission during extended periods.

Methodology/Principal Findings

We developed a stochastic cellular automata model to simulate the spread of dengue fever in a dense community. Each cell can correspond to a built area, and human and mosquito populations are individually monitored during the simulations. Human mobility and renewal, as well as vector infestation, are taken into consideration. To investigate the factors influencing the maintenance of viral circulation, two sets of simulations were performed: (1st) varying human renewal rates and human population sizes and (2nd) varying the house index (fraction of infested buildings) and vector per human ratio. We found that viral transmission is inhibited with the combination of small human populations with low renewal rates. It is also shown that maintenance of viral circulation for extended periods is possible at low values of house index. Based on the results of the model and on a study conducted in the city of Recife, Brazil, which associates vector infestation with Aedes aegytpi egg counts, we question the current methodology used in calculating the house index, based on larval survey.

Conclusions/Significance

This study contributed to a better understanding of the dynamics of dengue subsistence. Using basic concepts of metapopulations, we concluded that low infestation rates in a few neighborhoods ensure the persistence of dengue in large cities and suggested that better strategies should be implemented to obtain measures of house index values, in order to improve the dengue monitoring and control system.  相似文献   
199.
200.
The tumour mass is composed not only of heterogeneous neoplastic cells, but also a variety of other components that may affect cancer cells behaviour. The lack of detailed knowledge about all the constituents of the tumour microenvironment restricts the design of effective treatments. Nerves have been reported to contribute to the growth and maintenance of numerous tissues. The effects of sensory innervations on tumour growth remain unclear. Here, by using state‐of‐the‐art techniques, including Cre/loxP technologies, confocal microscopy, in vivo‐tracing and chemical denervation, we revealed the presence of sensory nerves infiltrating within the melanoma microenvironment, and affecting cancer progression. Strikingly, melanoma growth in vivo was accelerated following genetic ablation or chemical denervation of sensory nerves. In humans, a retrospective analysis of melanoma patients revealed that increased expression of genes related to sensory nerves in tumours was associated with better clinical outcomes. These findings suggest that sensory innervations counteract melanoma progression. The emerging knowledge from this research provides a novel target in the tumour microenvironment for therapeutic benefit in cancer patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号