首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   360篇
  免费   34篇
  国内免费   1篇
  395篇
  2022年   3篇
  2021年   5篇
  2020年   3篇
  2019年   7篇
  2018年   9篇
  2017年   9篇
  2016年   13篇
  2015年   16篇
  2014年   11篇
  2013年   21篇
  2012年   19篇
  2011年   12篇
  2010年   22篇
  2009年   11篇
  2008年   16篇
  2007年   20篇
  2006年   16篇
  2005年   13篇
  2004年   12篇
  2003年   20篇
  2002年   10篇
  2001年   11篇
  2000年   14篇
  1999年   7篇
  1998年   12篇
  1997年   7篇
  1996年   4篇
  1995年   5篇
  1994年   2篇
  1993年   7篇
  1992年   4篇
  1991年   9篇
  1990年   3篇
  1988年   5篇
  1987年   8篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1979年   3篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   3篇
  1974年   1篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1941年   2篇
排序方式: 共有395条查询结果,搜索用时 0 毫秒
391.
392.
A geometric model of the human ankle joint.   总被引:1,自引:0,他引:1  
A two-dimensional four-bar linkage model of the ankle joint is formulated to describe dorsi/plantarflexion in unloaded conditions as observed in passive tests on ankle complex specimens. The experiments demonstrated that the human ankle joint complex behaves as a single-degree-of-freedom system during passive motion, with a moving axis of rotation. The bulk of the movement occurred at the level of the ankle. Fibres within the calcaneofibular and tibiocalcaneal ligaments remained approximately isometric. The experiments showed that passive kinematics of the ankle complex is governed only by the articular surfaces and the ligaments. It was deduced that the ankle is a single-degree-of-freedom mechanism where mobility is allowed by the sliding of the articular surfaces upon each other and the isometric rotation of two ligaments about their origins and insertions, without tissue deformation. The linkage model is formed by the tibia/fibula and talus/calcaneus bone segments and by the calcaneofibular and tibiocalcaneal ligament segments. The model predicts the path of calcaneus motion, ligament orientations, instantaneous axis of rotation, and conjugate talus surface profile as observed in the experiments. Many features of ankle kinematics such as rolling and multiaxial rotation are elucidated. The geometrical model is a necessary preliminary step to the study of ankle joint stability in response to applied loads and can be used to predict the effects of changes to the original geometry of the intact joint. Careful reconstruction of the original geometry of the ligaments is necessary after injury or during total ankle replacement.  相似文献   
393.
Near infrared spectra (700-930 nm) were recorded from the head of anesthetized rats before and after blood substitution with a fluorocarbon emulsion. A large band, centered at 850 nm and characteristic of oxidized cytochrome a, a3, was evidenced in hemoglobin-free living animals. Variations in the amplitude of this absorption band were observed under different respiratory conditions.  相似文献   
394.
395.
Sheep are a commonly used and validated model for cardiovascular research and, more specifically, for heart valve research. Implanting a heart valve on the arrested heart in sheep is complex and is often complicated by difficulties in restarting the heart, causing significant on-table mortality. Therefore, optimal cardioprotective management during heart valve implantation in sheep is essential. However, little is known about successful cardioprotective management techniques in sheep. This article reports our experience in the cardioprotective management of 20 female sheep that underwent surgical aortic valve replacement with a stented tissue-engineered heart valve prosthesis. During this series of experiments, we modified our cardioprotection protocol to improve survival. We emphasize the importance of total body hypothermia and external cooling of the heart. Furthermore, we recommend repeated cardioplegia administration at 20 min intervals during surgery, with the final dosage of cardioplegia given immediately before the de-clamping of the aorta. To reduce the number of defibrillator shocks during a state of ventricular fibrillation (VF), we have learned to restart the heart by reclamping the aorta, administering cardioplegia until cardiac arrest, and de-clamping the aorta thereafter. Despite these encouraging results, more research is needed to finalize a protocol for this procedure.

Sheep are a commonly used and well-validated model for cardiovascular research, particularly for heart valve research, as blood pressure, heart rate, cardiac output, and intracardiac pressures are similar between sheep and humans. Sheep are particularly useful for heart valve research because observable changes in implanted heart valve bioprostheses that would take several years to develop in humans are apparent after only a few months in sheep.3,11 This feature allows the ovine model to provide relevant and important information about heart valve prostheses in a relatively short time span. The first preclinical step in developing novel heart valves is to test the valve in the pulmonary position in sheep. This surgical technique is relatively easy, as the procedure can be performed on a beating heart in a low-pressure circulation. However, aortic valve surgery is the most frequently performed valvular surgical intervention in human patients.12 Thus, an important next step is to prove the clinical applicability of a new valve by testing the valve in-vivo in the aortic position in an animal model. In contrast to pulmonary valve replacement, aortic valve replacement must be performed on an arrested heart, which makes the surgical procedure significantly more complex. The sheep is a difficult model for aortic valve replacements due to its narrow annulus, short distance between the annulus and coronary ostia, a short ascending aorta, and difficulty in de-airing of the heart prior to suturing the aortotomy.19 Consequently, high on-table mortality rates, ranging from 9% to 33%, have been reported.1,18,21,24 Furthermore, the incidence of mortality during the first 30 d after surgery, directly related to the surgical procedure, is often high, ranging from 17% to 50%.1,2,16,18,21 Therefore, optimizing cardioprotective strategies during surgery would improve postoperative survival. However, little is known about protective strategies in sheep. In the current series of experiments, we implanted stented, tissue engineered, aortic heart valve prostheses in 20 adult domestic sheep and developed cardioprotective techniques to increase survival rates. In this observational study, we share our experience and insights regarding cardioprotective management to potentially improve the outcome of future surgeries that require an arrested heart in sheep.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号