首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   463篇
  免费   24篇
  2023年   2篇
  2022年   2篇
  2021年   6篇
  2019年   5篇
  2018年   11篇
  2017年   13篇
  2016年   16篇
  2015年   13篇
  2014年   19篇
  2013年   35篇
  2012年   34篇
  2011年   42篇
  2010年   16篇
  2009年   16篇
  2008年   27篇
  2007年   18篇
  2006年   21篇
  2005年   17篇
  2004年   16篇
  2003年   18篇
  2002年   16篇
  2001年   7篇
  2000年   8篇
  1999年   8篇
  1998年   2篇
  1997年   7篇
  1996年   1篇
  1995年   4篇
  1994年   3篇
  1993年   6篇
  1992年   4篇
  1991年   1篇
  1990年   5篇
  1989年   5篇
  1988年   2篇
  1986年   5篇
  1985年   4篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1976年   2篇
  1975年   1篇
  1970年   4篇
  1969年   6篇
  1968年   10篇
  1967年   6篇
  1966年   3篇
  1965年   2篇
  1964年   13篇
排序方式: 共有487条查询结果,搜索用时 15 毫秒
31.
Variability of HXT2 at the protein and gene level was investigated among Saccharomyces sensu stricto and other yeast species. Results showed that the HXT2 gene is probably present in yeast genera other than Saccharomyces, suggesting that this gene is widely distributed in the yeast world. Chromosomal analyses indicated the stable location of HXT2 on the same chromosome and with the same copy number throughout the entire sensu stricto group. Results of the immunoblotting assay demonstrated that all strains tested (with the exception of S. cerevisiae DBVPG 6042) exhibited a lower level of Hxt2p expression than that shown by laboratory wild-type. Moreover, Hxt2p expression seems to reinforce the taxonomical differences between the two pairs of species (S. cerevisiae and S. paradoxus vs. S. pastorianus and S. bayanus) within the sensu stricto group of the genus of Saccharomyces that also reflect their different ecological niche.  相似文献   
32.
Caspase cleavage enhances the apoptosis-inducing effects of BAD   总被引:12,自引:0,他引:12       下载免费PDF全文
The function of BAD, a proapoptotic member of the Bcl-2 family, is regulated primarily by rapid changes in phosphorylation that modulate its protein-protein interactions and subcellular localization. We show here that, during interleukin-3 (IL-3) deprivation-induced apoptosis of 32Dcl3 murine myeloid precursor cells, BAD is cleaved by a caspase(s) at its N terminus to generate a 15-kDa truncated protein. The 15-kDa truncated BAD is a more potent inducer of apoptosis than the wild-type protein, whereas a mutant BAD resistant to caspase 3 cleavage is a weak apoptosis inducer. Truncated BAD is detectable only in the mitochondrial fraction, interacts with BCL-X(L) at least as effectively as the wild-type protein, and is more potent than wild-type BAD in inducing cytochrome c release. Human BAD, which is 43 amino acids shorter than its mouse counterpart, is also cleaved by a caspase(s) upon exposure of Jurkat T cells to anti-FAS antibody, tumor necrosis factor alpha (TNF-alpha), or TRAIL. Moreover, a truncated form of human BAD lacking the N-terminal 28 amino acids is more potent than wild-type BAD in inducing apoptosis. The generation of truncated BAD was blocked by Bcl-2 in IL-3-deprived 32Dcl3 cells but not in Jurkat T cells exposed to anti-FAS antibody, TNF-alpha, or TRAIL. Together, these findings point to a novel and important role for BAD in maintaining the apoptotic phenotype in response to various apoptosis inducers.  相似文献   
33.
In L6 muscle cells expressing wild-type human insulin receptors (L6hIR), insulin induced protein kinase Calpha (PKCalpha) and beta activities. The expression of kinase-deficient IR mutants abolished insulin stimulation of these PKC isoforms, indicating that receptor kinase is necessary for PKC activation by insulin. In L6hIR cells, inhibition of insulin receptor substrate 1 (IRS-1) expression caused a 90% decrease in insulin-induced PKCalpha and -beta activation and blocked insulin stimulation of mitogen-activated protein kinase (MAPK) and DNA synthesis. Blocking PKCbeta with either antisense oligonucleotide or the specific inhibitor LY379196 decreased the effects of insulin on MAPK activity and DNA synthesis by >80% but did not affect epidermal growth factor (EGF)- and serum-stimulated mitogenesis. In contrast, blocking c-Ras with lovastatin or the use of the L61,S186 dominant negative Ras mutant inhibited insulin-stimulated MAPK activity and DNA synthesis by only about 30% but completely blocked the effect of EGF. PKCbeta block did not affect Ras activity but almost completely inhibited insulin-induced Raf kinase activation and coprecipitation with PKCbeta. Finally, blocking PKCalpha expression by antisense oligonucleotide constitutively increased MAPK activity and DNA synthesis, with little effect on their insulin sensitivity. We make the following conclusions. (i) The tyrosine kinase activity of the IR is necessary for insulin activation of PKCalpha and -beta. (ii) IRS-1 phosphorylation is necessary for insulin activation of these PKCs in the L6 cells. (iii) In these cells, PKCbeta plays a unique Ras-independent role in mediating insulin but not EGF or other growth factor mitogenic signals.  相似文献   
34.
35.
Caveolae are plasma membrane subcompartments that have been implicated in signal transduction. In many cellular systems, caveolae are rich in signal transduction molecules such as G proteins and receptor-associated tyrosine kinases. An important structural component of the caveolae is caveolin. Recent evidence show that among the caveolin gene family, caveolin-3 is expressed in skeletal and cardiac muscle and caveolae are present in cardiac myocyte cells. Both the ANP receptor as well as the muscarinic receptor have been localized to the caveolae of cardiac myocytes in culture. These findings prompted us to conduct a further analysis of cardiac caveolae. In order to improve our understanding of the mechanisms of signal transduction regulation in cardiac myocytes, we isolated cardiac caveolae by discontinuous sucrose density gradient centrifugation from rat ventricles and rat neonatal cardiocytes. Our analysis of caveolar content demonstrates that heterotrimeric G proteins, p21ras and receptor-associated tyrosine kinases are concentrated within these structures. We also show that adrenergic stimulation induces an increase in the amount of diverse alpha- and beta-subunits of G proteins, as well as p21ras, in both in vivo and in vitro experimental settings. Our data show that cardiac caveolae are an important site of signal transduction regulation. This finding suggests a potential role for these structures in physiological and pathological states.  相似文献   
36.
Persistent activity and match effects are widely regarded as neuronal correlates of short-term storage and manipulation of information, with the first serving active maintenance and the latter supporting the comparison between memory contents and incoming sensory information. The mechanistic and functional relationship between these two basic neurophysiological signatures of working memory remains elusive. We propose that match signals are generated as a result of transient changes in local network excitability brought about by persistent activity. Neurons more active will be more excitable, and thus more responsive to external inputs. Accordingly, network responses are jointly determined by the incoming stimulus and the ongoing pattern of persistent activity. Using a spiking model network, we show that this mechanism is able to reproduce most of the experimental phenomenology of match effects as exposed by single-cell recordings during delayed-response tasks. The model provides a unified, parsimonious mechanistic account of the main neuronal correlates of working memory, makes several experimentally testable predictions, and demonstrates a new functional role for persistent activity.  相似文献   
37.
The gray mouse lemur (Microcebus murinus) is considered a useful primate model for translational research. In the framework of IMI PharmaCog project (Grant Agreement n°115009, www.pharmacog.org), we tested the hypothesis that spectral electroencephalographic (EEG) markers of motor and locomotor activity in gray mouse lemurs reflect typical movement-related desynchronization of alpha rhythms (about 8–12 Hz) in humans. To this aim, EEG (bipolar electrodes in frontal cortex) and electromyographic (EMG; bipolar electrodes sutured in neck muscles) data were recorded in 13 male adult (about 3 years) lemurs. Artifact-free EEG segments during active state (gross movements, exploratory movements or locomotor activity) and awake passive state (no sleep) were selected on the basis of instrumental measures of animal behavior, and were used as an input for EEG power density analysis. Results showed a clear peak of EEG power density at alpha range (7–9 Hz) during passive state. During active state, there was a reduction in alpha power density (8–12 Hz) and an increase of power density at slow frequencies (1–4 Hz). Relative EMG activity was related to EEG power density at 2–4 Hz (positive correlation) and at 8–12 Hz (negative correlation). These results suggest for the first time that the primate gray mouse lemurs and humans may share basic neurophysiologic mechanisms of synchronization of frontal alpha rhythms in awake passive state and their desynchronization during motor and locomotor activity. These EEG markers may be an ideal experimental model for translational basic (motor science) and applied (pharmacological and non-pharmacological interventions) research in Neurophysiology.  相似文献   
38.
The text describes a preventive clinical trial with drug treatment in a very rare neurodegenerative disease (Fatal familial Insomnia, FFI) designed with the help of individuals at genetic risk of developing the disease, asymptomatic carriers, who have agreed to be exposed over a 10-year period to doxycycline, an antibiotic with anti-prion activity. At least 10 carriers of the FFI mutation over 42 y old will be treated with doxycycline (100 mg/die) and the incidence of the disease will be compared to that of an historical dataset. For ethical reasons a randomized, double-blind, placebo-controlled trial was not feasible, however the study design and the statistical analysis ensure the scientific value of the results. This approach might represent an important breakthrough in terms of potential therapy and knowledge of rare diseases that could give some hopes to these neglected patients.  相似文献   
39.
Thymol is a natural biocide and component of some essential oils from herbs. Its inhibitory effect on the growth of different microorganisms is well documented. The precise targets of the antibacterial action of thymol is not yet been fully established, the action seems to take place in different ways. The strain Salmonella enterica serovar Thompson MCV1 was grown in the presence of a sublethal concentration (0.01%) of thymol. The proteins extracted from treated and untreated cells were subjected to 2‐D PAGE, followed by in‐gel spot digestion and subsequent MALDI‐TOF analysis. The analysis of gels showed many proteins that were either upregulated or downregulated by the presence of thymol, with significant changes in proteins belonging to different functional classes. In particular, the thioredoxin‐1 was not expressed in the treated cells, indicating that its absence could be a consequence of the stress caused by the presence of thymol. On the other hand, different chaperon proteins were upregulated or de novo synthesis such as GroEL and DnaK, key proteins in the protection mechanism toward thermal stress. Outer membrane proteins were upregulated in treated cells; indeed the bacterial envelope stress response is trigged by the accumulation of misfolded outer membrane proteins. Moreover, the thymol seems to impair the citrate metabolic pathway, as well as many enzymes involved in the synthesis of ATP. Definitely, thymol plays a role in altering very different pathways of cell metabolism.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号