首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1081篇
  免费   72篇
  国内免费   1篇
  1154篇
  2024年   2篇
  2023年   4篇
  2022年   24篇
  2021年   23篇
  2020年   19篇
  2019年   27篇
  2018年   16篇
  2017年   27篇
  2016年   37篇
  2015年   58篇
  2014年   71篇
  2013年   86篇
  2012年   103篇
  2011年   100篇
  2010年   67篇
  2009年   56篇
  2008年   69篇
  2007年   60篇
  2006年   65篇
  2005年   51篇
  2004年   50篇
  2003年   53篇
  2002年   41篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   5篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   6篇
  1992年   3篇
  1989年   2篇
  1981年   3篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有1154条查询结果,搜索用时 15 毫秒
71.
A computational approach to simulate the formation of possible imprinted polymers in acetonitrile solution for theophylline (THO) is proposed, using combined molecular dynamics (MD), molecular mechanics (MM), docking and site mapping computational techniques. Methacrylic acid (MAA) and methylmethacrylate (MMA) monomers are used to simulate possible homo and copolymer structures. The model is able predict binding affinity and selectivity when considering THO analogues, such as caffeine, theobromine, xanthine and 3-methylxanthine. Comparison with available experimental data is proposed.  相似文献   
72.
73.
Crisponi syndrome is a severe autosomal recessive condition that is phenotypically characterized by abnormal, paroxysmal muscular contractions resembling neonatal tetanus, large face, broad nose, anteverted nares, camptodactyly, hyperthermia, and sudden death in most cases. We performed homozygosity mapping in five Sardinian and three Turkish families with Crisponi syndrome, using high-density single-nucleotide polymorphism arrays, and identified a critical region on chromosome 19p12-13.1. The most prominent candidate gene was CRLF1, recently found to be involved in the pathogenesis of cold-induced sweating syndrome type 1 (CISS1). CISS1 belongs to a group of conditions with overlapping phenotypes, also including cold-induced sweating syndrome type 2 and Stuve-Wiedemann syndrome. All these syndromes are caused by mutations of genes of the ciliary neurotrophic factor (CNTF)-receptor pathway. Here, we describe the identification of four different CRLF1 mutations in eight different Crisponi-affected families, including a missense mutation, a single-nucleotide insertion, and a nonsense and an insertion/deletion (indel) mutation, all segregating with the disease trait in the families. Comparison of the mutation spectra of Crisponi syndrome and CISS1 suggests that neither the type nor the location of the CRLF1 mutations points to a phenotype/genotype correlation that would account for the most severe phenotype in Crisponi syndrome. Other, still-unknown molecular factors may be responsible for the variable phenotypic expression of the CRLF1 mutations. We suggest that the syndromes can comprise a family of "CNTF-receptor-related disorders," of which Crisponi syndrome would be the newest member and allelic to CISS1.  相似文献   
74.
In this paper we report the cloning and full sequencing of S-adenosylmethionine decarboxylase (SAMDC, EC 4.1.1.50) cDNA from Vitis vinifera L. (VV) leaves, an enzyme belonging to the polyamine biosynthetic pathway, which appears to play an important role in the regulation of plant growth and development. The presence of two overlapping ORFs (tiny ORF and small ORF) upstream of the main ORF is reported in the Vitis cDNA. When the Vitis SAMDC cDNA was expressed in yeast without the two upstream ORFs, the resulting activity was about 50 times higher than the activity obtained with the full cDNA. These results demonstrated the strong regulatory activity of the tiny and small ORFs. RT-PCR expression analysis showed evidence of a similar mRNA level in all the tissues tested, with the exception of the petioles. The VV SAMDC was also modelled using its homologues from Solanum tuberosum and Homo sapiens as template. The present work confirmed, for the first time in a woody plant of worldwide economic interest such as grapevine, the presence of a regulatory mechanism of SAMDC, enzyme that has a well-established importance in the modulation of plant growth and development.  相似文献   
75.
76.
The exposure of healthy subjects to high altitude represents a model to explore the pathophysiology of diseases related to tissue hypoxia and to evaluate pharmacological approaches potentially useful as a therapy for chronic diseases related to hypoxia. We explored the urinary peptidome to detect alterations induced by the exposure of subjects to different altitudes (sea level, high altitude = 3500 m, very high altitude = 5400 m) and to pharmacological treatment. Urine samples were collected from 47 subjects, randomly and blindly assigned to placebo (n = 24) or Telmisartan (n = 23). Samples were purified by the use of magnetic beads, then analysed by MALDI-TOF MS. Results showed that the urinary peptidome is not affected by the administration of Telmisartan, neither at the sea level nor at high and very high altitudes. In contrast, the urinary protein profiles are modified when subjects are exposed to high and very high altitudes, and we detected six peptides differentially expressed in hypobaric hypoxia at high or very high altitude compared to the sea level. Two of them were identified as fragments of the glycoprotein uromodulin and of the α1-antitrypsin. This is the first proteomic study showing that hypobaric hypoxia conditions affect the urinary peptidome.  相似文献   
77.
APE1/Ref-1, normally localized in the nucleus, is a regulator of the cellular response to oxidative stress. Cytoplasmic localization has been observed in several tumors and correlates with a poor prognosis. Because no data are available on liver tumors, we investigated APE1/Ref-1 subcellular localization and its correlation with survival in 47 consecutive patients undergoing hepatocellular carcinoma (HCC) resection. APE1/Ref-1 expression was determined by immunohistochemistry in HCC and surrounding liver cirrhosis (SLC) and compared with normal liver tissue. Survival probability was evaluated using Kaplan-Meier curves (log-rank test) and Cox regression. Cytoplasmic expression of APE1/Ref-1 was significantly higher in HCC than in SLC (P = 0.00001); normal liver showed only nuclear reactivity. Patients with poorly differentiated HCC showed a cytoplasmic expression three times higher than those with well-differentiated HCC (P = 0.03). Cytoplasmic localization was associated with a median survival time shorter than those with negative cytoplasmic reactivity (0.44 compared with 1.64 years, P = 0.003), and multivariable analysis confirmed that cytoplasmic APE1/Ref-1 localization is a predictor of survival. Cytoplasmic expression of APE1/Ref-1 is increased in HCC and is associated with a lower degree of differentiation and a shorter survival time, pointing to the use of the cytoplasmic localization of APE1/Ref-1 as a prognostic marker for HCC.  相似文献   
78.
79.
The actin filament (F-actin) cytoskeleton is thought to be required for normal axon extension during embryonic development. Whether this is true of axon regeneration in the mature nervous system is not known, but a progressive simplification of growth cones during development has been described and where specifically investigated, mature spinal cord axons appear to regenerate without growth cones. We have studied the cytoskeletal mechanisms of axon regeneration in developmentally early and late chicken sensory neurons, at embryonic day (E) 7 and 14 respectively. Depletion of F-actin blocked the regeneration of E7 but not E14 sensory axons in vitro. The differential sensitivity of axon regeneration to the loss of F-actin and growth cones correlated with endogenous levels of F-actin and growth cone morphology. The growth cones of E7 axons contained more F-actin and were more elaborate than those of E14 axons. The ability of E14 axons to regenerate in the absence of F-actin and growth cones was dependent on microtubule tip polymerization. Importantly, while the regeneration of E7 axons was strictly dependent on F-actin, regeneration of E14 axons was more dependent on microtubule tip polymerization. Furthermore, E14 axons exhibited altered microtubule polymerization relative to E7, as determined by imaging of microtubule tip polymerization in living neurons. These data indicate that the mechanism of axon regeneration undergoes a developmental switch between E7 and E14 from strict dependence on F-actin to a greater dependence on microtubule polymerization. Collectively, these experiments indicate that microtubule polymerization may be a therapeutic target for promoting regeneration of mature neurons.  相似文献   
80.
A significant step towards establishing the structure and function of a protein is the prediction of the local conformation of the polypeptide chain. In this article, we present systems for the prediction of three new alphabets of local structural motifs. The motifs are built by applying multidimensional scaling (MDS) and clustering to pair-wise angular distances for multiple phi-psi angle values collected from high-resolution protein structures. The predictive systems, based on ensembles of bidirectional recurrent neural network architectures, and trained on a large non-redundant set of protein structures, achieve 72%, 66%, and 60% correct motif prediction on an independent test set for di-peptides (six classes), tri-peptides (eight classes) and tetra-peptides (14 classes), respectively, 28-30% above baseline statistical predictors. We then build a further system, based on ensembles of two-layered bidirectional recurrent neural networks, to map structural motif predictions into a traditional 3-class (helix, strand, coil) secondary structure. This system achieves 79.5% correct prediction using the "hard" CASP 3-class assignment, and 81.4% with a more lenient assignment, outperforming a sophisticated state-of-the-art predictor (Porter) trained in the same experimental conditions. The structural motif predictor is publicly available at: http://distill.ucd.ie/porter+/.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号