首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1105篇
  免费   73篇
  国内免费   1篇
  2024年   2篇
  2023年   4篇
  2022年   24篇
  2021年   23篇
  2020年   19篇
  2019年   27篇
  2018年   16篇
  2017年   27篇
  2016年   37篇
  2015年   58篇
  2014年   71篇
  2013年   86篇
  2012年   103篇
  2011年   102篇
  2010年   66篇
  2009年   56篇
  2008年   70篇
  2007年   61篇
  2006年   68篇
  2005年   52篇
  2004年   51篇
  2003年   55篇
  2002年   44篇
  2001年   5篇
  2000年   3篇
  1999年   4篇
  1998年   3篇
  1997年   5篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   6篇
  1992年   3篇
  1990年   2篇
  1989年   3篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1981年   3篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有1179条查询结果,搜索用时 62 毫秒
71.
The present study aimed to ascertain the influence of crude protein (CP) digestibility in the rumen on the quantity and quality of milk production and reproductive performance, blood (BU) and milk (MU) urea, haematological profile and vaginal mucus urea, ammonia and potassium of buffalo cows. Lactating buffaloes (n = 84), 60 days in milk, were randomly subdivided into Group C (control, n = 42) and Group T (fed a diet supplemented with Aspergillus oryzae, n = 42). In three fistulated buffalo, the diet supplemented with Aspergillus oryzae showed a decrease (P < 0.01) in protein digestibility in the rumen (79.3 vs. 45.9%). No differences were registered in productive performance. Nine buffaloes not in oestrus during the dietary treatment (Groups T1 and C1), 30 days in milk, were used to study the haematological profile and to determine milk urea and ammonia in the vaginal mucus. The animals in Group T1 had higher ammonia values in the blood (P < 0.01) but not in the vaginal mucus than Group C1. A relationship was found between MU and BU. MU was influenced by CP intake and dry matter intake. No differences between the treatments were observed in reproductive performance and the conception rate and calving interval were 37.9% and 41.4% (90 trial-day) and 449 and 419 days respectively in Groups T and C. Reproductive performance was not influenced by high levels of BU nor by blood ammonia levels, although the latter were higher in the group fed the diet supplemented with Aspergillus oryzae.  相似文献   
72.
The spectral characteristics of fluorescence quenching by open reaction centres in isolated Photosystem II membranes were determined with very high resolution and analysed. Quenching due to photochemistry is maximal near 687 nm, minimal in the chlorophyll b emission interval and displays a distinctive structure around 670 nm. The amplitude of this `quenching hole' is about 0.03 for normalised spectra. On the basis of the absorption spectra of isolated chlorophyll–protein complexes, it is shown that these quenching structures can be exactly described by assuming that photochemistry lowers the fluorescence yield of the reaction centre complex (D1/D2/cytb 559) plus CP47, with quenching of the former complex being approximately double that of the latter complex. These data, which qualitatively indicate that there are kinetically limiting processes for primary photochemistry in the antenna, have been analysed by means of several different kinetic models. These models are derived from present structural knowledge of the arrangement of the chlorophyll–protein complexes in Photosystem II and incorporate the reversible charge separation characteristic of the exciton/radical pair equilibration model. In this way it is shown that Photosystem II cannot be considered to be purely trap limited and that exciton migration in the antenna imposes a diffusion limitation of about 30%, irrespective of the structural model assumed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
73.

Background

Non-steroidal anti-inflammatory agents (NSAIDs) are known to be associated with renal damage. No clear evidence exists regarding differential risk of chronic kidney disease (CKD), specifically, across various NSAIDs.

Aim

The aim of this population-based case-control study was to evaluate the association between use of individual NSAIDs and risk of CKD in a general population of Southern Italy.

Methods

A nested case-control study was carried out using the general practice Arianna database, identifying incident CKD patients as cases and matched controls from 2006 to 2011. The date of first CKD diagnosis was defined as the index date (ID). Conditional logistic regressions were performed to estimate the risk of CKD associated with NSAIDs by class and individual drugs as compared to non-use during different time windows (within one year, six or three months prior to ID), with the latter being defined as current users. Among current users, the effect of cumulative exposure to these drugs was evaluated.

Results

Overall, 1,989 CKD cases and 7,906 matched controls were identified. A statistically significant increase in the risk of CKD was found for current users of oxicams (adjusted OR: 1.68; 95% CI: 1.15-2.44) and concerning individual compounds, for ketorolac (adj. OR: 2.54; 95% CI: 1.45-4.44), meloxicam (adj. OR: 1.98; 95% CI: 1.01-3.87) and piroxicam (adj. OR: 1.95; 95% CI: 1.19-3.21).

Conclusions

The risk of CKD varies across individual NSAIDs. Increased risk has been found for ketorolac, which may precipitate subclinical CKD through acute renal damage, and long-term exposure to oxicams, especially meloxicam and piroxicam.  相似文献   
74.
Pyruvate kinase M2 (PKM2) acts at the crossroad of growth and metabolism pathways in cells. PKM2 regulation by growth factors can redirect glycolytic intermediates into key biosynthetic pathway. Here we show that IGF1 can regulate glycolysis rate, stimulate PKM2 Ser/Thr phosphorylation and decrease cellular pyruvate kinase activity. Upon IGF1 treatment we found an increase of the dimeric form of PKM2 and the enrichment of PKM2 in the nucleus. This effect was associated to a reduction of pyruvate kinase enzymatic activity and was reversed using metformin, which decreases Akt phosphorylation. IGF1 induced an increased nuclear localization of PKM2 and STAT3, which correlated with an increased HIF1α, HK2, and GLUT1 expression and glucose entrapment. Metformin inhibited HK2, GLUT1, HIF-1α expression and glucose consumption. These findings suggest a role of IGFIR/Akt axis in regulating glycolysis by Ser/Thr PKM2 phosphorylation in cancer cells.  相似文献   
75.
Potential boron neutron capture therapy (BNCT) agents have been designed on the basis of the evidence about translocator protein (TSPO) overexpression on the outer mitochondrial membrane of tumor cells. The structure of the first TSPO ligand bearing a carborane cage (compound 2d) has been modified in order to find a suitable candidate for in vivo studies. The designed compounds were synthesized and evaluated for their potential interaction with TSPO and tumor cells. In vitro biological evaluation showed in the case of fluoromethyl derivative 4b a nanomolar TSPO affinity very similar to that of 2d, a significantly lower cytotoxicity, and a slightly superior performance as boron carrier toward breast cancer cells. Moreover, compound 4b could be used as a 1?F magnetic resonance imaging (MRI) agent as well as labeled with 11C or 1?F to obtain positron emission tomography (PET) radiotracers in order to apply the "see and treat" strategy in BNCT.  相似文献   
76.
The N-tosyl carbamates 4a–e, easily prepared starting from the Baylis–Hillman adducts 3a–e, underwent cyclization carried out with I2/NIS in the presence of NaH, to give the corresponding 2-oxo-1,3-oxazolidines 5a–e in good yield and total stereoselection when the substituent at C-5 is Ar. After the removal of tosyl group, followed by the cleavage of the heterocyclic ring, the α-methyl-α-amino acids 8a,b and 10 were obtained in good yield as hydrochlorides.  相似文献   
77.
A series of novel compound libraries inhibiting interleukin-2 inducible T cell kinase (ITK) were designed, synthesized and evaluated. In the first design cycle two library scaffolds were identified showing low micromolar inhibition of ITK. Further iterative design cycles including crystal structure information of ITK and structurally related kinases led to the identification of indolylindazole and indolylpyrazolopyridine compounds with low nanomolar ITK inhibition.  相似文献   
78.
The most challenging analytical task facing phosphoproteome determination requires the isolation of phosphorylated peptides from the myriad of unphosphorylated species. In the past, several strategies for phosphopeptide isolation have been proposed in combination with subsequent mass spectrometric investigations. Among these techniques, immobilized metal affinity chromatography and titanium dioxide have been recognized as the most effective. Here, we present an alternative method for the enrichment of phosphopeptides based on hydroxyapatite (HAP) chromatography. By taking advantage of the strong interaction of HAP with phosphate and calcium ions, we developed an efficient method for the selective separation and fractionation of phosphorylated peptides. The effectiveness and efficiency of recovery for this procedure was assayed using tryptic digests of standard phosphorylated protein mixtures. Based on the higher affinity of multi‐phosphorylated peptides for HAP surfaces, the introduction of a phosphate buffer gradient for stepwise peptide elution resulted in the separation of mono‐, di‐, tri‐, and multi‐phosphorylated peptides. Thus, we demonstrated that this technique is highly selective and independent of the degree of peptide phosphorylation.  相似文献   
79.
Unconjugated bilirubin (UCB) is a powerful antioxidant and a modulator of cell growth through the interaction with several signal transduction pathways. Although newborns develop a physiological jaundice, in case of severe hyperbilirubinemia UCB may become neurotoxic causing severe long‐term neuronal damages, also known as bilirubin encephalopathy. To investigate the mechanisms of UCB‐induced neuronal toxicity, we used the human neuroblastoma cell line SH‐SY5Y as an in vitro model system. We verified that UCB caused cell death, in part due to oxidative stress, which leads to DNA damage and cell growth reduction. The mechanisms of cytotoxicity and cell adaptation to UCB were studied through a proteomic approach that identified differentially expressed proteins involved in cell proliferation, intracellular trafficking, protein degradation and oxidative stress response. In particular, the results indicated that cells exposed to UCB undertake an adaptive response that involves DJ‐1, a multifunctional neuroprotective protein, crucial for cellular oxidative stress homeostasis. This study sheds light on the mechanisms of bilirubin‐induced neurotoxicity and might help to design a strategy to prevent or ameliorate the neuronal damages leading to bilirubin encephalopathy.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号