首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1296篇
  免费   102篇
  国内免费   1篇
  2023年   3篇
  2022年   20篇
  2021年   25篇
  2020年   19篇
  2019年   30篇
  2018年   18篇
  2017年   29篇
  2016年   39篇
  2015年   67篇
  2014年   78篇
  2013年   102篇
  2012年   120篇
  2011年   106篇
  2010年   80篇
  2009年   59篇
  2008年   83篇
  2007年   68篇
  2006年   75篇
  2005年   65篇
  2004年   57篇
  2003年   60篇
  2002年   49篇
  2001年   11篇
  2000年   8篇
  1999年   10篇
  1998年   3篇
  1997年   7篇
  1995年   8篇
  1994年   6篇
  1993年   11篇
  1992年   10篇
  1991年   6篇
  1990年   4篇
  1989年   6篇
  1988年   3篇
  1986年   3篇
  1984年   2篇
  1983年   4篇
  1981年   5篇
  1980年   2篇
  1979年   3篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1971年   3篇
  1968年   3篇
  1965年   2篇
排序方式: 共有1399条查询结果,搜索用时 828 毫秒
141.
The cold-adapted Pseudomonas fragi lipase (PFL) displays highest activity on short-chain triglyceride substrates and is rapidly inactivated at moderate temperature. Sequence and structure comparison with homologous lipases endowed with different substrate specificity and stability, pointed to three polar residues in the lid region, that were replaced with the amino acids conserved at equivalent positions in the reference lipases. Substitutions at residues T137 and T138 modified the lipase chain-length preference profile, increasing the relative activity towards C8 substrates. Moreover, mutations conferred to PFL higher temperature stability. On the other hand, replacement of the serine at position 141 by glycine destabilized the protein.  相似文献   
142.
Recent studies have shown that an endogenous lipoperoxidation product, 9-hydroxystearic acid (9-HSA), acts in colon carcinoma cells (HT29) as a growth inhibitor by inducing p21(WAF1) in an immediate-early, p53-independent manner and that p21(WAF1) is required for 9-HSA-mediated growth arrest in HT29 cells. It is conceivable, therefore, to hypothesize that the cytostatic effect induced by this agent is at least partially associated with a molecular mechanism that involves histone deacetylase 1 (HDAC1) inhibition, as demonstrated for sodium butyrate and other specific inhibitors, such as trichostatin A and hydroxamic acids. Here, we show that, after administration, 9-HSA causes an accumulation of hyperacetylated histones and strongly inhibits the activity of HDAC1. The interaction of 9-HSA with the catalytic site of the enzyme has been highlighted by computational modeling of the human HDAC1, using its homolog from the hyperthermophilic Aquifex aeolicus as a template. Consistent with the experimental data, we find that 9-HSA can bind to the active site of the protein, showing that the inhibition of the enzyme can be explained at the molecular level by the ligand-protein interaction.  相似文献   
143.
Uromodulin is the pregnancy-associated Tamm-Horsfall glycoprotein, with the enhanced ability to inhibit T-cell proliferation. Pregnancy-associated structural changes mainly occur in the O-glycosylation of this glycoprotein. These include up to 12 glycan structures, made up of an unusual core type 2 sequence terminated with one, two, or three sialyl Lewis(x) sequences; this type of O-glycans could serve as E- and P-selectin ligands. The present work focuses on the most complex one; a tetradecamer made up of a type 2 core carrying three sialyl Lewis(x) branches. Five different monosaccharides are assembled by 14 glycosidic linkages. The conformational behavior of the constituting disaccharide segments was evaluated using the flexible residue procedure of the MM3 molecular mechanics procedure. For each disaccharide, the adiabatic energy surface, along with the local energy minima were established. All these results were used for the generation, prior to complete optimization of the tetradecamer. This was followed by a complete exploration of conformational hyperspace throughout the use of the single coordinate method as implemented in the CICADA program. Despite the potential flexibility of the tetradecasaccharide, only four conformational families occur, accounting for more than 95% of the total low energy conformations. For each family, the molecular properties (electrostatic, lipophilicity, and hydrogen potential) were studied. The shape of the tetradecasaccharide is best described as a flat ribbon, flanked by three branches having terminal sialyl residues. Two of the branches interact through nonbonded interactions, bringing further energy stabilization, and limiting the conformational flexibility of the sialyl residues. Only one branch maintains the original conformational features of sialyl Lewis(x). This O-glycan can be seen as a fascinating example of 'dendrimeric' structure, where the spatial arrangement of three S-Le(x) epitopes may favor its complementary 'presentations' for the interactions with E- and P-selectins.  相似文献   
144.
Structure-function relationships of the flavoprotein glycine oxidase (GO), which was recently proposed as the first enzyme in the biosynthesis of thiamine in Bacillus subtilis, has been investigated by a combination of structural and functional studies. The structure of the GO-glycolate complex was determined at 1.8 A, a resolution at which a sketch of the residues involved in FAD binding and in substrate interaction can be depicted. GO can be considered a member of the "amine oxidase" class of flavoproteins, such as d-amino acid oxidase and monomeric sarcosine oxidase. With the obtained model of GO the monomer-monomer interactions can be analyzed in detail, thus explaining the structural basis of the stable tetrameric oligomerization state of GO, which is unique for the GR(2) subfamily of flavooxidases. On the other hand, the three-dimensional structure of GO and the functional experiments do not provide the functional significance of such an oligomerization state; GO does not show an allosteric behavior. The results do not clarify the metabolic role of this enzyme in B. subtilis; the broad substrate specificity of GO cannot be correlated with the inferred function in thiamine biosynthesis, and the structure does not show how GO could interact with ThiS, the following enzyme in thiamine biosynthesis. However, they do let a general catabolic role of this enzyme on primary or secondary amines to be excluded because the expression of GO is not inducible by glycine, sarcosine, or d-alanine as carbon or nitrogen sources.  相似文献   
145.
Leber's hereditary optic neuropathy (LHON) was the first maternally inherited disease to be associated with point mutations in mitochondrial DNA and is now considered the most prevalent mitochondrial disorder. The pathology is characterized by selective loss of ganglion cells in the retina leading to central vision loss and optic atrophy, prevalently in young males. The pathogenic mtDNA point mutations for LHON affect complex I with the double effect of lowering the ATP synthesis driven by complex I substrates and increasing oxidative stress chronically. In this review, we first consider the biochemical changes associated with the proton-translocating NADH-quinone oxidoreductase of mitochondria in cybrid cells carrying the most common LHON mutations. However, the LHON cybrid bioenergetic dysfunction is essentially compensated under normal conditions, i.e. in glucose medium, but is unrevealed by stressful conditions such as growing cybrids in glucose free/galactose medium, which forces cells to rely only on respiratory chain for ATP synthesis. In fact, the second part of this review deals with the investigation of LHON cybrid death pathway in galactose medium. The parallel marked changes in antioxidant enzymes, during the time-course of galactose experiments, also reveal a relevant role played by oxidative stress. The LHON cybrid model sheds light on the complex interplay amongst the different levels of biochemical consequences deriving from complex I mutations in determining neurodegeneration in LHON, and suggests an unsuspected role of bioenergetics in shaping cell death pathways.  相似文献   
146.
Chronic inflammatory diseases are characterized by the persistent presence of macrophages and other mononuclear cells, tissue destruction, cell proliferation, and the deposition of extracellular matrix (ECM). The tissue degradation is mediated, in part, by enhanced proteinase expression by macrophages. It has been demonstrated recently that macrophage proteinase expression can be stimulated or inhibited by purified ECM components. However, in an intact ECM the biologically active domains of matrix components may be masked either by tertiary conformation or by complex association with other matrix molecules. In an effort to determine whether a complex ECM produced by vascular smooth muscle cells (SMC) regulates macrophage degradative phenotype, we prepared insoluble SMC matrices and examined their ability to regulate proteinase expression by RAW264.7 and thioglycollate-elicited peritoneal macrophages. Here we demonstrate that macrophage engagement of SMC-ECM triggers PKC-dependent activation of MAPK(erk1/2) leading to increased expression of cyclooxygenase (COX)-2 and prostaglandin (PG) E(2) synthesis. The addition of PGE(2) to macrophage cultures stimulates their expression of both urokinase-type plasminogen activator and MMP-9, and the selective COX-2 inhibitor NS-398 blocks ECM-induced proteinase expression. Moreover, ECM-induced PGE(2) and MMP-9 expression by elicited COX-2(-/-) macrophages is markedly reduced when compared with the response of either COX-2(+/-) or COX-2(+/+) macrophages. These data clearly demonstrate that SMC-ECM exerts a regulatory role on the degradative phenotype of macrophages via enhanced urokinase-type plasminogen activator and MMP-9 expression, and identify COX-2 as a targetable component of the signaling pathway leading to increased proteinase expression.  相似文献   
147.
Glutamate modulation of human lymphocyte growth: in vitro studies   总被引:1,自引:0,他引:1  
Peripheral blood mononuclear cell (PBMC) proliferation induced by phytohemagglutinin, or by anti-CD3 alone or plus anti-CD28 monoclonal antibodies (mAb) was inhibited by glutamate (Glu) in a concentration-dependent manner. This inhibition was not reproduced by selective ionotropic Glu receptor agonists, whereas it was potentiated by l-buthionine-(S,R)-sulfoximine, which depletes glutathione (GSH) stores, and counteracted by 2-mercaptoethanol, a preserver of cell thiols. The inhibitory effects of Glu were related to depletion of intracellular GSH stores, since it decreased GSH levels in a concentration-dependent manner. Furthermore, Glu modulated cytokine secretion by anti-CD3 mAb activated PBMC: it increased IFN-gamma (+44.3+/-8.2%) and IL-10 (+31.6+/-9.7%) secretion, whereas that of IL-2, IL-4, IL-5, and TNF-alpha was not affected. These data suggest that high levels of Glu, which can be reached in damaged tissues, modulate lymphocyte responses to activating stimuli by favouring polarization of the T helper effector response.  相似文献   
148.
149.
The immunoregulatory function of NKT cells is crucial for prevention of autoimmunity. The prototypical NKT cell Ag alpha-galactosylceramide is not present in mammalian cells, and little is known about the mechanism responsible for NKT cell recruitment and activation. Up-regulation of CD1d, the NKT cell restriction molecule, expressed on mononuclear cells infiltrating the target organ, could represent the physiological trigger for NKT cells to self-contain T cell immunity and to prevent autoimmune disease. Recognition of CD1d, either by itself or bound to self-ligands (selfCD1d), could drive NKT cells toward an immunoregulatory phenotype. Hence, ineffective NKT cell-mediated immunoregulation in autoimmune-prone individuals including nonobese diabetic (NOD) mice could be related to defective signals that regulate CD1d expression at time and site of autoimmunity. To test this hypothesis, we transgenically overexpressed CD1d molecules under the control of the insulin promoter within the pancreatic islets of NOD mice (insCD1d). Recognition of overexpressed CD1d molecules rescued NKT cell immunoregulatory function and prevented autoimmune diabetes in insCD1d transgenic NOD mice. Protection from diabetes was associated with a biased IL-4-secreting cytokine phenotype of NKT cells and alteration of the cytokine microenvironment in the pancreatic lymph nodes of transgenic mice. The net effect was a reduced development of the autoimmune T cell repertoire. Our findings suggest that up-regulation of CD1d expression during inflammation is critical to maintain T cell homeostasis and to prevent autoimmunity.  相似文献   
150.
Previous studies have demonstrated that the mammalian retina contains a circadian clock system that controls several retinal functions. In mammals the location of the retinal circadian clock is unknown whereas, in non-mammalian vertebrates, earlier work has demonstrated that photoreceptor cells contain the circadian clock. New experimental evidence has suggested that in mammals the retinal circadian clock may be located outside the photoreceptor cells. In this study we report that circadian rhythms in Aa-nat mRNA (in vivo) and melatonin synthesis (in vitro) are still present in the retina of rats lacking photoreceptors. The circadian pacemaker(s) controlling such rhythms is probably located in kainic acid sensitive neurons in the inner retina since kainic acid injections abolished the rhythmicity. These data are the first direct demonstration that circadian rhythmicity in the mammalian retina can be generated independently from the photoreceptors and the suprachiasmatic nuclei of the hypothalamus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号