首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1085篇
  免费   72篇
  国内免费   1篇
  1158篇
  2024年   2篇
  2023年   4篇
  2022年   24篇
  2021年   23篇
  2020年   19篇
  2019年   27篇
  2018年   16篇
  2017年   27篇
  2016年   37篇
  2015年   58篇
  2014年   71篇
  2013年   86篇
  2012年   103篇
  2011年   101篇
  2010年   66篇
  2009年   56篇
  2008年   70篇
  2007年   60篇
  2006年   66篇
  2005年   51篇
  2004年   51篇
  2003年   53篇
  2002年   41篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   5篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   6篇
  1992年   3篇
  1989年   2篇
  1985年   1篇
  1981年   3篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有1158条查询结果,搜索用时 0 毫秒
11.
12.
The aim of the present work is to describe histologically, histochemically and immunocytochemically, the sequence of events that lead to first and second set rejection of allo- or xenograft in leeches. Graft responses of leeches are comparable and are described following specific steps: inflammatory phase, rejection phase and granulation tissue formation (including re-epithelialisation, angiogenesis and fibroplasia).The responses to first and second graft in first set graft rejection as well as to the first transplant in second set graft experiments are identical and in the time span of a week all grafts are destroyed and disappear. In the second set graft rejection experiments the responses against the second transplant are markedly accelerated. The second graft shows massive structural alterations and it is rapidly rejected, within 3-4 days.Our results permit to highlight that in leeches there is a specific responsiveness of immune system similar to those described in highly divergent phyla.  相似文献   
13.
14.
Aquaporin-4 (AQP-4), the most important water channel in the brain, is expressed by astrocyte end feet abutting microvessels. Altered expression levels of AQP-4 and redistribution of the protein throughout the membranes of cells found in glioblastoma multiforme (GBM) lead to development of the edema often found surrounding the tumor mass. Dysregulation of AQP-4 also occurs in hippocampal sclerosis and cortical dysplasia in patients with refractory partial epilepsy. This work reports on analysis of the relationship between AQP-4 expression and the incidence of epileptic seizures in patients with GBM. Immunohistochemical and polymerase chain reaction techniques were used to evaluate AQP-4 in biopsy specimens from 19 patients with GBM, 10 of who had a history of seizures before surgery. AQP-4 mRNA levels were identical in the two groups of patients, but AQP-4 expression was more frequently detected on the GBM membranes from specimens of patients with seizures than from individuals without (10 versus 2, P < 0.001). We conclude that reduced expression of cell surface AQP-4 is characteristic of GBM patients without seizures, likely attributable to a posttranslational mechanism.  相似文献   
15.
Pyruvate kinase M2 (PKM2) acts at the crossroad of growth and metabolism pathways in cells. PKM2 regulation by growth factors can redirect glycolytic intermediates into key biosynthetic pathway. Here we show that IGF1 can regulate glycolysis rate, stimulate PKM2 Ser/Thr phosphorylation and decrease cellular pyruvate kinase activity. Upon IGF1 treatment we found an increase of the dimeric form of PKM2 and the enrichment of PKM2 in the nucleus. This effect was associated to a reduction of pyruvate kinase enzymatic activity and was reversed using metformin, which decreases Akt phosphorylation. IGF1 induced an increased nuclear localization of PKM2 and STAT3, which correlated with an increased HIF1α, HK2, and GLUT1 expression and glucose entrapment. Metformin inhibited HK2, GLUT1, HIF-1α expression and glucose consumption. These findings suggest a role of IGFIR/Akt axis in regulating glycolysis by Ser/Thr PKM2 phosphorylation in cancer cells.  相似文献   
16.
Identification of hepatotoxin-producing cyanobacteria by DNA-chip   总被引:1,自引:0,他引:1  
We developed a new tool to detect and identify hepatotoxin-producing cyanobacteria of the genera Anabaena , Microcystis , Planktothrix , Nostoc and Nodularia . Genus-specific probe pairs were designed for the detection of the microcystin ( mcyE ) and nodularin synthetase genes ( ndaF ) of these five genera to be used with a DNA-chip. The method couples a ligation detection reaction, in which the polymerase chain reaction (PCR)-amplified mcyE / ndaF genes are recognized by the probe pairs, with a hybridization on a universal microarray. All the probe pairs specifically detected the corresponding mcyE / ndaF gene sequences when DNA from the microcystin- or nodularin-producing cyanobacterial strains were used as template in the PCR. Furthermore, the strict specificity of detection enabled identification of the potential hepatotoxin producers. Detection of the genes was very sensitive; only 1–5 fmol of the PCR product were needed to produce signal intensities that exceeded the set background threshold level. The genus-specific probe pairs also reliably detected potential microcystin producers in DNA extracted from six lake and four brackish water samples. In lake samples, the same microcystin producers were identified with quantitative real-time PCR analysis. The specificity, sensitivity and ability of the DNA-chip in simultaneously detecting all the main hepatotoxin producers make this method suitable for high-throughput analysis and monitoring of environmental samples.  相似文献   
17.
Lacking an efficient process to produce 7-aminocephalosporanic acid from cephalosporin C in a single step, d-amino acid oxidase (DAAO) is of foremost importance in the industrial, two-step process used for this purpose. We report a detailed study on the catalytic properties of the three available DAAOs, namely, a mammalian DAAO and two others from yeast (Rhodotorula gracilis and Trigonopsis variabilis). In comparing the kinetic parameters determined for the three DAAOs, with both cephalosporin C and d-alanine as substrate, the catalytic efficiency of the two enzymes from microorganism is at least 2 orders of magnitude higher than that of pig kidney DAAO. Furthermore, the mammalian enzyme is more sensitive to product inhibition (from hydrogen peroxide and glutaryl-7-aminocephalosporanic acid). Therefore, enzymes from microorganisms appear to be by far more suitable catalysts for bioconversion, although some different minor differences are present between them (e.g., a higher activity of the R. gracilis enzyme when the bioconversion is carried out at saturating oxygen concentration). The mammalian DAAO, even being a poor catalyst, is more stable with respect to temperature than the R. gracilis enzyme in the free form. In any case, for industrial purposes DAAO is used only in the immobilized form where a strong enzyme stabilization occurs.  相似文献   
18.
19.
Tumor growth is allowed by its ability to escape immune system surveillance. An important role in determining tumor evasion from immune control might be played by tumor-infiltrating regulatory lymphocytes. This study was aimed at characterizing phenotype and function of CD8+ CD28- T regulatory cells infiltrating human cancer. Lymphocytes infiltrating primitive tumor lesion and/or satellite lymph node from a series of 42 human cancers were phenotypically studied and functionally analyzed by suppressor assays. The unprecedented observation was made that CD8+ CD28- T regulatory lymphocytes are almost constantly present and functional in human tumors, being able to inhibit both T cell proliferation and cytotoxicity. CD4+ CD25+ T regulatory lymphocytes associate with CD8+ CD28- T regulatory cells so that the immunosuppressive activity of tumor-infiltrating regulatory T cell subsets, altogether considered, may become predominant. The infiltration of regulatory T cells seems tumor related, being present in metastatic but not in metastasis-free satellite lymph nodes; it likely depends on both in situ generation (via cytokine production) and recruitment from the periphery (via chemokine secretion). Collectively, these results have pathogenic relevance and implication for immunotherapy of cancer.  相似文献   
20.
Pathological mutations in the mitochondrial DNA (mtDNA) produce a diverse range of tissue-specific diseases and the proportion of mutant mitochondrial DNA can increase or decrease with time via segregation, dependent on the cell or tissue type. Previously we found that adenocarcinoma (A549.B2) cells favored wild-type (WT) mtDNA, whereas rhabdomyosarcoma (RD.Myo) cells favored mutant (m3243G) mtDNA. Mitochondrial quality control (mtQC) can purge the cells of dysfunctional mitochondria via mitochondrial dynamics and mitophagy and appears to offer the perfect solution to the human diseases caused by mutant mtDNA. In A549.B2 and RD.Myo cybrids, with various mutant mtDNA levels, mtQC was explored together with macroautophagy/autophagy and bioenergetic profile. The 2 types of tumor-derived cell lines differed in bioenergetic profile and mitophagy, but not in autophagy. A549.B2 cybrids displayed upregulation of mitophagy, increased mtDNA removal, mitochondrial fragmentation and mitochondrial depolarization on incubation with oligomycin, parameters that correlated with mutant load. Conversely, heteroplasmic RD.Myo lines had lower mitophagic markers that negatively correlated with mutant load, combined with a fully polarized and highly fused mitochondrial network. These findings indicate that pathological mutant mitochondrial DNA can modulate mitochondrial dynamics and mitophagy in a cell-type dependent manner and thereby offer an explanation for the persistence and accumulation of deleterious variants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号