首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   813篇
  免费   52篇
  2022年   4篇
  2021年   5篇
  2020年   9篇
  2019年   12篇
  2018年   12篇
  2017年   19篇
  2016年   22篇
  2015年   31篇
  2014年   37篇
  2013年   50篇
  2012年   52篇
  2011年   47篇
  2010年   41篇
  2009年   25篇
  2008年   41篇
  2007年   52篇
  2006年   54篇
  2005年   36篇
  2004年   47篇
  2003年   45篇
  2002年   38篇
  2001年   16篇
  2000年   16篇
  1999年   16篇
  1998年   5篇
  1997年   12篇
  1996年   7篇
  1995年   8篇
  1994年   4篇
  1993年   7篇
  1992年   11篇
  1991年   11篇
  1990年   2篇
  1989年   7篇
  1988年   2篇
  1987年   3篇
  1986年   6篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1982年   4篇
  1981年   4篇
  1980年   8篇
  1979年   8篇
  1978年   5篇
  1977年   2篇
  1976年   4篇
  1975年   2篇
  1973年   4篇
  1959年   1篇
排序方式: 共有865条查询结果,搜索用时 46 毫秒
91.
Recently the possibility of producing the capsular polysaccharide K4, a fructosylated chondroitin, in fed-batch experiments was assessed. In the present study, a novel downstream process to obtain chondroitin from Escherichia coli K4 fermentation broth was developed. The process is simple, scalable and economical. In particular, downstream procedures were optimized with a particular aim of purifying a product suitable for further chemical modifications, in an attempt to develop a biotechnological platform for chondroitin sulfate production. During process development, membrane devices (ultrafiltration/diafiltration) were exploited, selecting the right cassette cut-offs for different phases of purification. The operational conditions (cross-flow rate and transmembrane pressure) used for the process were determined on an ?KTA cross-flow instrument (GE Healthcare, USA), a lab-scale automatic tangential flow filtration system. In addition, parameters such as selectivity and throughput were calculated based on the analytical quantification of K4 and defructosylated K4, as well as the major contaminants. The complete downstream procedure yielded about 75% chondroitin with a purity higher than 90%.  相似文献   
92.
The Maillard reaction between lactose and proteins occurs during thermal treatment of milk and lactosylated β-lactoglobulin, α-lactalbumin and caseins have widely been used to monitor the quality of dairy products. We recently demonstrated that a number of other whey milk proteins essential for nutrient delivery, defense against bacteria/virus and cellular proliferation become lactosylated during milk processing. The extent of their modification is associated with the harshness of product manufacturing. Since fat globule proteins are also highly important for the health-beneficial properties of milk, an evaluation of their lactosylation is crucial for a complete understanding of aliment nutritional characteristics. This is more important when milk is the unique dietary source, as in the infant diet. To this purpose, a sequential proteomic procedure involving an optimized milk fat globule (MFG) preparation/electrophoretic resolution, shot-gun analysis of gel portions for protein identification, selective trapping of lactosylated peptides by phenylboronate chromatography and their analysis by nanoLC-ESI-electron transfer dissociation (ETD) tandem MS was used for systematic characterization of fat globule proteins in milk samples subjected to various manufacturing procedures. Significant MFG protein compositional changes were observed between samples, highlighting the progressive adsorption of caseins and whey proteins on the fat globule surface as result of the technological process used. A significant lactosylation of MFG proteins was observed in ultra-high temperature sterilized and powdered for infant nutrition milk preparations, which well paralleled with the harshness of thermal treatment. Globally, this study allowed the identification of novel 157 non-redundant modification sites and 35 MFG proteins never reported so far as being lactosylated, in addition to the 153 ones ascertained here as present on other 21 MFG-adsorbed proteins whose nature was already characterized. Novel MFG proteins include components involved in nutrient delivery, defense response against pathogens and cellular proliferation/differentiation. Nutritional, biological and toxicological consequences of these findings are here discussed, highlighting their possible impact on children's diet.  相似文献   
93.
The potential of anaflatoxin B(1) (AnAFB(1)) conjugated to keyhole limpet hemocyanin (KLH) as a vaccine (AnAFB(1)-KLH) in controlling the carry over of the aflatoxin B(1) (AFB(1)) metabolite aflatoxin M(1) (AFM(1)) in cow milk is reported. AFB(1) is the most carcinogenic compound in food and foodstuffs amongst aflatoxins (AFs). AnAFB(1) is AFB(1) chemically modified as AFB(1)-1(O-carboxymethyl) oxime. In comparison to AFB(1), AnAFB(1) has proven to be non-toxic in vitro to human hepatocarcinoma cells and non mutagenic to Salmonella typhimurium strains. AnAFB(1)-KLH was used for immunization of cows proving to induce a long lasting titer of anti-AFB(1) IgG antibodies (Abs) which were cross reactive with AFB(1), AFG(1), and AFG(2). The elicited anti-AFB(1) Abs were able to hinder the secretion of AFM(1) into the milk of cows continuously fed with AFB(1). Vaccination of lactating animals with conjugated AnAFB(1) may represent a solution to the public hazard constituted by milk and cheese contaminated with AFs.  相似文献   
94.
95.
Ghrelin is a gastric hormone increased during caloric restriction and fat depletion. A role of ghrelin in the regulation of lipid and energy metabolism is suggested by fat gain independent of changes in food intake during exogenous ghrelin administration in rodents. We investigated the potential effects of peripheral ghrelin administration (two times daily 200-micrograms [DOSAGE ERROR CORRECTED] sc injection for 4 days) on triglyceride content and mitochondrial and lipid metabolism gene expression in rat liver and muscles. Compared with vehicle, ghrelin increased body weight but not food intake and circulating insulin. In liver, ghrelin induced a lipogenic and glucogenic pattern of gene expression and increased triglyceride content while reducing activated (phosphorylated) stimulator of fatty acid oxidation, AMP-activated protein kinase (AMPK, all P < 0.05), with unchanged mitochondrial oxidative enzyme activities. In contrast, triglyceride content was reduced (P < 0.05) after ghrelin administration in mixed (gastrocnemius) and unchanged in oxidative (soleus) muscle. In mixed muscle, ghrelin increased (P < 0.05) mitochondrial oxidative enzyme activities independent of changes in expression of fat metabolism genes and phosphorylated AMPK. Expression of peroxisome proliferator-activated receptor-gamma, the activation of which reduces muscle fat content, was selectively increased in mixed muscle where it paralleled changes in oxidative capacities (P < 0.05). Thus ghrelin induces tissue-specific changes in mitochondrial and lipid metabolism gene expression and favors triglyceride deposition in liver over skeletal muscle. These novel effects of ghrelin in the regulation of lean tissue fat distribution and metabolism could contribute to metabolic adaptation to caloric restriction and loss of body fat.  相似文献   
96.
97.
Thre different techniques— light scattering, radiowave dielectric spectroscopy, and fluorescence— were employed to investigate conformational variations in Escherichia coli ribosomes induced by removal of specific proteins. To this end, particles were treated with lithium chloride at different ion strength values to produce ribosomal cores. It was previously observed that treatment of ribosomes to subdenaturing temperatures promotes a structural rearrangement that implies a higher exposure of ribosomal RNA to the solvent. Results presented here strongly suggest that protein elimination from the ribosomal particle produces an overall response recalling the same variation of physical parameters previously observed after thermal treatment. We therefore suggest that high salt treatment produces the same structural modification caused by exposure to subdenaturing temperatures.  相似文献   
98.
A series of compounds combining the beta-lactam and polyphenol scaffold have been prepared and evaluated for inhibition of human leukocyte elastase and matrix metallo-proteases MMP-2 and MMP-9. The design of these compounds has been based on the 'overlapping-type' strategy where two pharmacophores are linked in a single molecule. The most powerful compound against elastase was an N-galloyl-4-alkyliden beta-lactam, [3-[1-(tert-butyl-dimethyl-silanyloxy)-ethyl]-4-oxo-1-(3,4,5-tris-benzyloxy-benzoyl)-azetidin-2-ylidene]-acetic acid ethylester, with an IC50 of 0.5 microM; while the most powerful against MMP-2 was a 4-alkyliden beta-lactam arylated on the C-3 hydroxy side chain (3,5-bis-benzyloxy-4-hydroxy-benzoic acid 1-(2-benzyloxycarbonylmethylene-4-oxo-azetidin-3-yl)-ethyl ester) with an IC50 of 4 microM. Of the total 35 compounds tested, high levels of inhibition of elastase and of MMPs were separately exerted by distinct molecules.  相似文献   
99.
A series of pyrazolo[4,3-c]pyrrolo[3,2-f]quinolin-3-one derivatives 6, 7a-c, 8a,b, 9a,b and 10-12 were synthesized as modified pyrazoloquinolinone analogs (PQs) and evaluated for their ability to inhibit radioligand to central and peripheral benzodiazepine receptors (BZRs) and their effect on GABA(A) alpha1beta2gamma2L receptors expressed in Xenopus laevis oocytes. Multistep synthesis starting from 5-nitroindole, via the Gould-Jacobs reaction to the quinoline nucleus, yielded key intermediates 9-chloro-3H-pyrrolo[3,2-f]quinoline-8-carboxylates. The reaction of the latter with methyl-hydrazine and various phenyl-hydrazines furnished the final compounds. In order to confirm the expected tetracyclic 2-substituted-2H-pyrazolopyrroloquinolin-3-one structure, IR spectrophotometric, mono-1H and 13C and bi-dimensional spectrometric and HRMS analyses were carried out: all compounds were found to be 2-substituted 3-keto tautomers; compound 6 only differed because it turned out to be 1-methyl-2H-pyrazolo[4,3-c]pyrrolo[3,2-f]quinolin-3-olo. The results of this work are consistent with those previously reported for PQs: 7-9 show high potency in displacing specific [3H]flunitrazepam from its receptor site; no compound was active in inhibiting the binding of [3H]PK 11195. They all act as antagonists at central BZR.  相似文献   
100.
It is shown in literature that stress, such as deprivation of trophic factors and hypoxia, induces apoptosis in cultured cells and in tissues. In light of these results, we explored the possibility of protecting cells from programmed death by improving the metabolism of the mitochondrion. To this end, acetyl-L-carnitine was administered at various concentrations under conditions of serum deprivation. The choice of this drug was based on the accepted notion that acetyl-L-carnitine is able to stabilize mitochondrial membranes and to increase the supply of energy to the organelle. The results presented here indicate that the drug protects cells from apoptotic death: this is demonstrated by a lower positivity to the TUNEL reaction and by a strong reduction of the apoptotic DNA ladder in serum-deprived cells. The involvement of the mitochondrial apoptotic pathway was assessed by cytochrome C release and immunoreactivity to caspase 3. Moreover, acetyl-L-carnitine stimulates cell proliferation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号