首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   15篇
  230篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   7篇
  2018年   2篇
  2017年   3篇
  2016年   11篇
  2015年   8篇
  2014年   9篇
  2013年   18篇
  2012年   19篇
  2011年   18篇
  2010年   11篇
  2009年   9篇
  2008年   10篇
  2007年   15篇
  2006年   20篇
  2005年   9篇
  2004年   9篇
  2003年   11篇
  2002年   12篇
  2001年   2篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1981年   1篇
  1978年   1篇
  1974年   2篇
排序方式: 共有230条查询结果,搜索用时 10 毫秒
41.
42.
The cleavage of bovine collagen I by neutrophil collagenase MMP-8 has been followed at pH 7.4, 37 degrees C. The behavior of the whole enzyme molecule (whMMP-8), displaying both the catalytic domain and the hemopexin-like domain, has been compared under the same experimental conditions with that of the catalytic domain only. The main observation is that whMMP-8 cleaves bovine collagen I only at a single specific site, as already reported by many others (Mallya, S. K., Mookhtiar, K. A., Gao, Y., Brew, K., Dioszegi, M., Birkedal-Hansen, H., and van Wart, H. E. (1990) Biochemistry 29, 10628-10634; Kn?uper, V., Osthues, A., DeClerk, Y. A., Langley, K. A., Bl?ser, J., and Tschesche, H. (1993) Biochem. J. 291, 847-854; Marini, S., Fasciglione, G. F., De Sanctis, G., D'Alessio, S., Politi, V., and Coletta, M. (2000) J. Biol. Chem. 275, 18657-18663), whereas the catalytic domain lacks this specificity and cleaves the collagen molecule at multiple sites. Furthermore, a meaningful difference is observed for the cleavage features displayed by two forms of the catalytic domain, which differ for the N terminus resulting from the activation process (i.e. the former Met(80) of the proenzyme (MetMMP-8) and the former Phe(79) of the proenzyme (PheMMP-8)). Thus, the PheMMP-8 species is characterized by a much faster k(cat)/K(m), fully attributable to a lower K(m), suggesting that the conformation of the catalytic domain, induced by the insertion of this N-terminal residue in a specific pocket (Reinemer, P., Grams, F., Huber, R., Kleine, T., Schnierer, S., Piper, M., Tschesche, H., and Bode, W. (1994) FEBS Lett. 338, 227-233), brings about a better, although less discriminatory, recognition process of cleavage site(s) on bovine collagen I.  相似文献   
43.
Resident cell populations of the skin contribute to the inflammatory response by producing an array of chemokines, which attract leukocytes from the circulation. TNF-alpha is a major inducer of proinflammatory mediators in keratinocytes. We have recently observed that epidermal growth factor receptor (EGFR) signaling affects TNF-alpha-driven chemokine expression in epidermal keratinocytes, and its functional impairment increases the levels of crucial chemoattractants such as CCL2/MCP-1, CCL5/RANTES, and CXCL10/IFN-gamma-inducible protein-10. In this study, we report evidence that EGFR-dependent ERK1/2 activity is implicated in this mechanism. Abrogation of ERK1/2 activity with specific inhibitors increased chemokine expression in keratinocytes by enhancing mRNA stabilization. In mouse models, inflammatory response to irritants and T cell-mediated contact hypersensitivity were both aggravated when elicited in a skin area previously treated with an EGFR or a MAPK kinase 1/2 inhibitor. In contrast, impairment of p38alpha beta MAPK phosphorylation markedly attenuated these responses. Our data indicate that EGFR-dependent ERK1/2 activity in keratinocytes takes part to a homeostatic mechanism regulating inflammatory responses, and emphasize the distinct role of MAPKs as potential targets for manipulating inflammation in the skin.  相似文献   
44.
One of the causes of permanent disability in chronic multiple sclerosis patients is the inability of oligodendrocyte progenitor cells (OPCs) to terminate their maturation program at lesions. To identify key regulators of myelin gene expression acting at the last stages of OPC maturation we developed a drug repositioning strategy based on the mouse immortalized oligodendrocyte (OL) cell line Oli-neu brought to the premyelination stage by stably expressing a key factor regulating the last stages of OL maturation. The Prestwick Chemical Library® of 1,200 FDA-approved compound(s) was repositioned at three dosages based on the induction of Myelin Basic Protein (MBP) expression. Drug hits were further validated using dosage-dependent reproducibility tests and biochemical assays. The glucocorticoid class of compounds was the most highly represented and we found that they can be divided in three groups according to their efficacy on MBP up-regulation. Since target identification is crucial before bringing compounds to the clinic, we searched for common targets of the primary screen hits based on their known chemical-target interactomes, and the pathways predicted by top ranking compounds were validated using specific inhibitors. Two of the top ranking compounds, Halcinonide and Clobetasol, act as Smoothened (Smo) agonists to up-regulate myelin gene expression in the Oli-neuM cell line. Further, RxRγ activation is required for MBP expression upon Halcinonide and Clobetasol treatment. These data indicate Clobetasol and Halcinonide as potential promyelinating drugs and also provide a mechanistic understanding of their mode of action in the pathway leading to myelination in OPCs. Furthermore, our classification of glucocorticoids with respect to MBP expression provides important novel insights into their effects in the CNS and a rational criteria for their choice in combinatorial therapies in de-myelinating diseases.  相似文献   
45.
In recent studies performed in our laboratory we have shown that acute administration of (-)-linalool, the natural occurring enantiomer in essential oils, possesses anti-inflammatory, antihyperalgesic and antinociceptive effects in different animal models. The antihyperalgesic and antinociceptive effects of (-)-linalool have been ascribed to its capacity in stimulating the opioidergic, cholinergic and dopaminergic systems, as well as to its interaction with K+ channels, or to its local anaesthetic activity and/or to the negative modulation of glutamate transmission. Activation of A1 or A2A receptors has been shown to induce antinociceptive effects, and the possible involvement of adenosine in (-)-linalool antinociceptive effect, has not been elucidated yet. Therefore, in the present study, we have investigated the effects of 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), a selective adenosine A1 receptor antagonist and the effects of 3,7-dimethyl-1-propargilxanthine (DMPX), a selective adenosine A2A receptor antagonist on the antinociception of (-)-linalool in mice, measured in the hot-plate test. Both DPCPX (0.1 mg/kg; i.p.) and DMPX (0.1 mg/kg; i.p.) pre-treatment significantly depressed the antinociceptive effect of (-)-linalool at the highest doses tested. These findings demonstrated that the effect of (-)-linalool on pain responses is, at least partially, mediated by the activity of adenosine A1 and A2A receptors.  相似文献   
46.
To understand the role of TGF-β signaling in cardiovascular development, we generated mice with conditional deletion of the TGF-β type II receptor (TβRII) gene (Tgfbr2) in cells expressing the smooth muscle cell-specific protein SM22α. The SM22α promoter was active in tissues involved in cardiovascular development: vascular smooth muscle cells (VSMCs), epicardium and myocardium. All SM22-Cre+/−/Tgfbr2 flox/flox embryos died during the last third of gestation. About half the mutant embryos exhibited heart defects (ventricular myocardium hypoplasia and septal defects). All mutant embryos displayed profound vascular abnormalities in the descending thoracic aorta (irregular outline and thickness, occasional aneurysms and elastic fiber disarray). Restriction of these defects to the descending thoracic aorta occurred despite similar levels of Tgfbr2 invalidation in the other portions of the aorta, the ductus arteriosus and the pulmonary trunk. Immunocytochemistry identified impairment of VSMC differentiation in the coronary vessels and the descending thoracic aorta as crucial for the defects. Ventricular myocardial hypoplasia, when present, was associated to impaired α-SMA differentiation of the epicardium-derived coronary VSMCs. Tgfbr2 deletion in the VSMCs of the descending thoracic aorta diminished the number of α-SMA-positive VSMC progenitors in the media at E11.5 and drastically decreased tropoelastin (from E11.5) and fibulin-5 (from E.12.5) synthesis and/or deposition. Defective elastogenesis observed in all mutant embryos and the resulting dilatation and probable rupture of the descending thoracic aorta might explain the late embryonic lethality. To conclude, during mouse development, TGF-β plays an irreplaceable role on the differentiation of the VSMCs in the coronary vessels and the descending thoracic aorta.  相似文献   
47.
Uridine nucleotides are endogenous nucleotides which are released into the extracellular space from mechanical stressed endothelial and epithelial cells as well as lipopolysaccharide (lps)-stimulated monocytes. Here, we studied the biological activity of the selective purinoreceptor P2Y6 (P2YR6) agonist Uridine 5'diphosphate (UDP) as well as the P2YR2- and P2YR4-activating uridine 5'triphosphate (UTP) on human dendritic cells (DC). These cells in their immature state have the ability to migrate from blood to peripheral target sites where they sense dangerous signals and capture potential antigens. Moreover, mature DC induce innate immune responses and migrate from peripheral tissues to secondary lymphoid organs in order to activate naive T cells and initiate adaptive immunity. Here, we were able to show that uridine nucleotides stimulated Ca(2+) transients, actin polymerization, and chemotaxis in immature DC. Experiments with pertussis toxin, the stable pyrimidine agonist uridine 5'-O-(2-thiodiphosphate) (UDPgammaS) and receptor antagonists, as well as desensitization studies suggested that these uridine nucleotides activities were mediated by different G(i) protein-coupled receptors. During lps-induced maturation, DC lost their ability to respond towards uridine nucleotides with these activities. Instead, UDP, but not UTP, stimulated the release of the CXC-chemokine 8 (CXCL8) from mature DC in a reactive blue sensitive manner. Moreover, our study indicates that UDP stimulates different signaling pathways in immature and mature DC in order to favor the accumulation of immature DC and to augment the capacity to secrete CXCL8 in mature DC.  相似文献   
48.
Streptococcus agalactiae is an etiological agent of several infective diseases in humans. We previously demonstrated that FbsA, a fibrinogen-binding protein expressed by this bacterium, elicits a fibrinogen-dependent aggregation of platelets. In the present communication, we show that the binding of FbsA to fibrinogen is specific and saturable, and that the FbsA-binding site resides in the D region of fibrinogen. In accordance with the repetitive nature of the protein, we found that FbsA contains multiple binding sites for fibrinogen. By using several biophysical methods, we provide evidence that the addition of FbsA induces extensive fibrinogen aggregation and has noticeable effects on thrombin-catalyzed fibrin clot formation. Fibrinogen aggregation was also found to depend on FbsA concentration and on the number of FbsA repeat units. Scanning electron microscopy evidentiated that, while fibrin clot is made of a fine fibrillar network, FbsA-induced Fbg aggregates consist of thicker fibers organized in a cage-like structure. The structural difference of the two structures was further indicated by the diverse immunological reactivity and capability to bind tissue-type plasminogen activator or plasminogen. The mechanisms of FbsA-induced fibrinogen aggregation and fibrin polymerization followed distinct pathways since Fbg assembly was not inhibited by GPRP, a specific inhibitor of fibrin polymerization. This finding was supported by the different sensitivity of the aggregates to the disruptive effects of urea and guanidine hydrochloride. We suggest that FbsA and fibrinogen play complementary roles in contributing to thrombogenesis associated with S. agalactiae infection.  相似文献   
49.
The aim of this study was to examine the relationship between push-time and final race time in skeleton participants during a series of major international competitions to determine the importance of the push phase in skeleton performance. Correlations were computed from the first and second heat split data measured during 24 men and 24 women skeleton competitions. Body mass, height, age, and years of experience of the first 30 men and women athletes of the skeleton, bobsleigh and luge 2003-2004 World Cup ranking were used for the comparison between sliding sports. Moderate but significant correlations (p < 0.05) were found between push-time and final race time in men (r(mean) = 0.48) and women (r(mean) = 0.63). No correlations were found between changes in the individual push-time between the first and second heat with the corresponding changes in final race time. The bobsleigh sliders are heavier than the athletes of the other sliding disciplines. Luge athletes have more experience and are younger than bobsleigh and skeleton sliders. The results of this study suggest that a fast push phase is a prerequisite to success in competition and confirms that the selection of skeleton athletes based on the ability to accelerate to a maximum speed quickly could be valid. However, a good or improved push-time does not ensure a placement in the top finishing positions. On the basis of these results, we suggest that strength and power training is necessary to maintain a short push-time but additional physical training aimed to enhance the push phase might not reflect performance improvements. The recruitment of younger athletes and an increase of youthful competitive activity may be another effective way to reach international competitive results.  相似文献   
50.
An intersubunit interactions study related to the active site has been performed on the wild-type cytidine deaminase (CDA) and on the mutant enzyme F137W/W113F. F137 is the homologous to the Bacillus subtilis CDA F125 involved in the subunit interactions. In the presence of SDS, wild-type human CDA dissociates into enzymatically inactive monomers without intermediate forms via a non-cooperative transition. Extensive dialysis or dilution of the inactivated monomers restores completely the activity. Circular dichroism measurements show that the secondary/tertiary structure organization of each subunit is unaffected by the SDS concentration, while the mutation Phe/Trp causes weakening in quaternary structure. The presence of the strong human CDA competitive inhibitor 5-fluorozebularine disfavours dissociation of the tetramer into subunits in the wild-type CDA, but not in mutant enzyme F137W/W113F. The absence of tyrosine fluorescence and the much higher quantum yield of the double mutant protein spectrum suggest the occurrence of an energy transfer effect between the protein subunits. This assumption is confirmed by the crystallographic studies on B.subtilis in which it is shown that three different subunits concur with the formation of each of the four active sites and that F125, homologous to the human CDA F137, is located at the interface between two different subunits contributing to the formation of active site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号