首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   227篇
  免费   15篇
  242篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   8篇
  2018年   2篇
  2017年   3篇
  2016年   11篇
  2015年   8篇
  2014年   9篇
  2013年   18篇
  2012年   19篇
  2011年   18篇
  2010年   11篇
  2009年   9篇
  2008年   10篇
  2007年   15篇
  2006年   20篇
  2005年   9篇
  2004年   9篇
  2003年   11篇
  2002年   12篇
  2001年   5篇
  2000年   3篇
  1999年   5篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1990年   3篇
  1989年   1篇
  1985年   1篇
  1981年   1篇
  1978年   1篇
  1974年   2篇
排序方式: 共有242条查询结果,搜索用时 10 毫秒
51.
An intersubunit interactions study related to the active site has been performed on the wild-type cytidine deaminase (CDA) and on the mutant enzyme F137W/W113F. F137 is the homologous to the Bacillus subtilis CDA F125 involved in the subunit interactions. In the presence of SDS, wild-type human CDA dissociates into enzymatically inactive monomers without intermediate forms via a non-cooperative transition. Extensive dialysis or dilution of the inactivated monomers restores completely the activity. Circular dichroism measurements show that the secondary/tertiary structure organization of each subunit is unaffected by the SDS concentration, while the mutation Phe/Trp causes weakening in quaternary structure. The presence of the strong human CDA competitive inhibitor 5-fluorozebularine disfavours dissociation of the tetramer into subunits in the wild-type CDA, but not in mutant enzyme F137W/W113F. The absence of tyrosine fluorescence and the much higher quantum yield of the double mutant protein spectrum suggest the occurrence of an energy transfer effect between the protein subunits. This assumption is confirmed by the crystallographic studies on B.subtilis in which it is shown that three different subunits concur with the formation of each of the four active sites and that F125, homologous to the human CDA F137, is located at the interface between two different subunits contributing to the formation of active site.  相似文献   
52.
Resonance Raman and infrared spectra and the CO dissociation rates (k(off)) were measured in Coprinus cinereus peroxidase (CIP) and several mutants in the heme binding pocket. These mutants included the Asp245Asn, Arg51Leu, Arg51Gln, Arg51Asn, Arg51Lys, Phe54Trp, and Phe54Val mutants. Binding of CO to CIP produced different CO adducts at pH 6 and 10. At pH 6, the bound CO is H-bonded to the protonated distal His55 residue, whereas at alkaline pH, the vibrational signatures and the rate of CO dissociation indicate a distal side which is more open or flexible than in other plant peroxidases. The distal Arg51 residue is important in determining the rate of dissociation in the acid form, increasing by 8-17-fold in the Arg51 mutants compared to that for the wild-type protein. Replacement of the distal Phe with Trp created a new acid form characterized by vibrational frequencies and k(off) values very similar to those of cytochrome c peroxidase.  相似文献   
53.
54.
55.
Dendritic cells (DCs) express functional purinergic receptors, but the effects of purine nucleotides on DC functions have been marginally investigated. In this study, we report on the ability of micromolar concentrations of ATP to affect the maturation and Ag-presenting function of monocyte-derived DCs in vitro. Chronic stimulation (24 h) of DCs with low, noncytotoxic ATP doses increased membrane expression of CD54, CD80, CD86, and CD83, slightly reduced the endocytic activity of DCs, and augmented their capacity to promote proliferation of allogeneic naive T lymphocytes. Moreover, ATP enhanced LPS- and soluble CD40 ligand-induced CD54, CD86, and CD83 expression. On the other hand, ATP markedly and dose-dependently inhibited LPS- and soluble CD40 ligand-dependent production of IL-1alpha, IL-1beta, TNF-alpha, IL-6, and IL-12, whereas IL-1 receptor antagonist and IL-10 production was not affected. As a result, T cell lines generated from allogeneic naive CD45RA(+) T cells primed with DCs matured in the presence of ATP produced lower amounts of IFN-gamma and higher levels of IL-4, IL-5, and IL-10 compared with T cell lines obtained with LPS-stimulated DCs. ATP inhibition of TNF-alpha and IL-12 production by mature DCs was not mediated by PGs or elevation of intracellular cAMP and did not require ATP degradation. The inability of UTP and the similar potency of ADP to reproduce ATP effects indicated that ATP could function through the P2X receptor family. These results suggest that extracellular ATP may serve as an important regulatory signal to dampen IL-12 production by DCs and thus prevent exaggerated and harmful immune responses.  相似文献   
56.
57.
Studies of CO ligand binding revealed that two protein states with different ligand affinities exist in the protoglobin from Methanosarcina acetivorans (in MaPgb*, residue Cys(E20)101 was mutated to Ser). The switch between the two states occurs upon the ligation of MaPgb*. In this work, site-directed mutagenesis was used to explore the role of selected amino acids in ligand sensing and stabilization and in affecting the equilibrium between the “more reactive” and “less reactive” conformational states of MaPgb*. A combination of experimental data obtained from electronic and resonance Raman absorption spectra, CO ligand-binding kinetics, and X-ray crystallography was employed. Three amino acids were assigned a critical role: Trp(60)B9, Tyr(61)B10, and Phe(93)E11. Trp(60)B9 and Tyr(61)B10 are involved in ligand stabilization in the distal heme pocket; the strength of their interaction was reflected by the spectra of the CO-ligated MaPgb* and by the CO dissociation rate constants. In contrast, Phe(93)E11 is a key player in sensing the heme-bound ligand and promotes the rotation of the Trp(60)B9 side chain, thus favoring ligand stabilization. Although the structural bases of the fast CO binding rate constant of MaPgb* are still unclear, Trp(60)B9, Tyr(61)B10, and Phe(93)E11 play a role in regulating heme/ligand affinity.  相似文献   
58.

Objectives

Microbial translocation (MT) through the gut accounts for immune activation and CD4+ loss in HIV and may influence HCV disease progression in HIV/HCV co-infection. We asked whether increased MT and immune activation may hamper anti-HCV response in HIV/HCV patients.

Methods

98 HIV/HCV patients who received pegylated-alpha-interferon (peg-INF-alpha)/ribavirin were retrospectively analyzed. Baseline MT (lipopolysaccharide, LPS), host response to MT (sCD14), CD38+HLA-DR+CD4+/CD8+, HCV genotype, severity of liver disease were assessed according to Early Virological Response (EVR: HCV-RNA <50 IU/mL at week 12 of therapy or ≥2 log10 reduction from baseline after 12 weeks of therapy) and Sustained Virological Response (SVR: HCV-RNA <50 IU/mL 24 weeks after end of therapy). Mann-Whitney/Chi-square test and Pearson''s correlation were used. Multivariable regression was performed to determine factors associated with EVR/SVR.

Results

71 patients displayed EVR; 41 SVR. Patients with HCV genotypes 1–4 and cirrhosis presented a trend to higher sCD14, compared to patients with genotypes 2–3 (p = 0.053) and no cirrhosis (p = 0.052). EVR and SVR patients showed lower levels of circulating sCD14 (p = 0.0001, p = 0.026, respectively), but similar T-cell activation compared to Non-EVR (Null Responders, NR) and Non-SVR (N-SVR) subjects. sCD14 resulted the main predictive factor of EVR (0.145 for each sCD14 unit more, 95%CI 0.031–0.688, p = 0.015). SVR was associated only with HCV genotypes 2–3 (AOR 0.022 for genotypes 1–4 vs 2–3, 95%CI 0.001–0.469, p = 0.014).

Conclusions

In HIV/HCV patients sCD14 correlates with the severity of liver disease and predicts early response to peg-INF-alpha/ribavirin, suggesting MT-driven immune activation as pathway of HIV/HCV co-infection and response to therapy.  相似文献   
59.
60.
A further function of cytochrome c (cyt c), beyond respiration, is realized outside mitochondria in the apoptotic program. In the early events of apoptosis, the interaction of cyt c with a mitochondrion-specific phospholipid, cardiolipin (CL), brings about a conformational transition of the protein and acquirement of peroxidase activity. The hallmark of cyt c with peroxidase activity is its partial unfolding accompanied by loosening of the Fe sixth axial bond and an enhanced access of the heme catalytic site to small molecules like H2O2. To investigate the peroxidase activity of non-native cyt c, different forms of the protein were analyzed with the aim to correlate their structural features with the acquired enzymatic activity and apoptogenic properties (wt cyt c/CL complex and two single cyt c variants, H26Y and Y67H, free and bound to CL). The results suggest that cyt c may respond to different environments by changing its fold thus favouring the exertion of different biological functions in different pathophysiological cell conditions. Transitions among different conformations are regulated by endogenous molecules such as ATP and may be affected by synthetic molecules such as minocycline, thus suggesting a mechanism explaining its use as therapeutic agent impacting on disease-associated oxidative and apoptotic mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号