首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   17篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   7篇
  2018年   2篇
  2017年   3篇
  2016年   12篇
  2015年   9篇
  2014年   9篇
  2013年   18篇
  2012年   19篇
  2011年   20篇
  2010年   12篇
  2009年   9篇
  2008年   11篇
  2007年   17篇
  2006年   20篇
  2005年   9篇
  2004年   10篇
  2003年   12篇
  2002年   12篇
  2001年   2篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1992年   2篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1974年   2篇
  1966年   1篇
排序方式: 共有249条查询结果,搜索用时 15 毫秒
21.
Mammalian lipoxygenases (LOXs) have been implicated in cellular defense response and are important for physiological homeostasis. Since their discovery, LOXs have been believed to function as monomeric enzymes that exhibit allosteric properties. In aqueous solutions, the rabbit 12/15-LOX is mainly present as hydrated monomer but changes in the local physiochemical environment suggested a monomer-dimer equilibrium. Because the allosteric character of the enzyme can hardly be explained using a single ligand binding-site model, we proposed that the binding of allosteric effectors may shift the monomer-dimer equilibrium toward dimer formation. To test this hypothesis, we explored the impact of an allosteric effector [13(S)-hydroxyoctadeca-9(Z),11(E)-dienoic acid] on the structural properties of rabbit 12/15-LOX by small-angle X-ray scattering. Our data indicate that the enzyme undergoes ligand-induced dimerization in aqueous solution, and molecular dynamics simulations suggested that LOX dimers may be stable in the presence of substrate fatty acids. These data provide direct structural evidence for the existence of LOX dimers, where two noncovalently linked enzyme molecules might work in unison and, therefore, such mode of association might be related to the allosteric character of 12/15-LOX. Introduction of negatively charged residues (W181E + H585E and L183E + L192E) at the intermonomer interface disturbs the hydrophobic dimer interaction of the wild-type LOX, and this structural alteration may lead to functional distortion of mutant enzymes.  相似文献   
22.
Fatty acid amide hydrolase (FAAH) is a membrane protein that plays a relevant role in the metabolism of fatty acid amides and esters. It degrades important neurotransmitters such as oleamide and anandamide, and it has been involved in a number of human pathological conditions, representing therefore a valuable target for biochemical and pharmacological research. In this study, we have investigated in vitro the structure-function relationship of rat and human FAAHs. In particular circular dichroism, fluorescence spectroscopy and light scattering measurements have been performed, in order to characterize the structural features of the two proteins, both in the presence and absence of the irreversible inhibitor methoxyarachidonyl-fluorophosphonate. The results demonstrate that the structural dynamics of the two FAAHs are different, despite their high sequence homology and overall similarity in temperature-dependence. Additionally, membrane binding and kinetic assays of both FAAHs indicate that also the functional properties of the two enzymes are different in their interaction with lipid bilayers and with exogenous inhibitors. These findings suggest that pre-clinical studies of FAAH-dependent human diseases based only on animal models should be interpreted with caution, and that the efficacy of new drugs targeted to FAAH should be tested in vitro, on both rat and human enzymes.  相似文献   
23.
24.
Lipoxygenases form a heterogeneous family of lipid peroxidizing enzymes, which have been implicated in the synthesis of inflammatory mediators, in cell development and in the pathogenesis of various diseases with major health and political relevance (atherosclerosis, osteoporosis). The crystal structures of various lipoxygenase-isoforms have been reported, and X-ray coordinates for enzyme-ligand complexes are also available. Although the 3D-structures of plant and animal lipoxygenase-isoforms are very similar, recent small-angle X-ray scattering data suggested a higher degree of motional flexibility of mammalian isozymes in aqueous solutions. To explore the molecular basis for these differences we performed dynamic fluorescence measurements that allowed us to study temperature-induced conformational changes arising from three-dimensional fluctuations of the protein matrix. For this purpose, we first investigated the impact of elevated temperature on activity, secondary structure, tertiary structure dynamics and conformational alterations. Applying fluorescence resonance energy transfer we also tested the membrane binding properties of the two lipoxygenase-isoforms, and compared their binding parameters. Taken together, our results indicate that the rabbit 12/15-lipoxygenase is more susceptible to temperature-induced structural alterations than the soybean enzyme. Moreover, the rabbit enzyme exhibits a higher degree of conformational flexibility of the entire protein molecule (global flexibility) and offers the possibility of augmented substrate movement at the catalytic center (local flexibility).  相似文献   
25.
Eddy covariance and sapflow data from three Mediterranean ecosystems were analysed via top‐down approaches in conjunction with a mechanistic ecosystem gas‐exchange model to test current assumptions about drought effects on ecosystem respiration and canopy CO2/H2O exchange. The three sites include two nearly monospecific Quercus ilex L. forests – one on karstic limestone (Puéchabon), the other on fluvial sand with access to ground water (Castelporziano) – and a typical mixed macchia on limestone (Arca di Noè). Estimates of ecosystem respiration were derived from light response curves of net ecosystem CO2 exchange. Subsequently, values of ecosystem gross carbon uptake were computed from eddy covariance CO2 fluxes and estimates of ecosystem respiration as a function of soil temperature and moisture. Bulk canopy conductance was calculated by inversion of the Penman‐Monteith equation. In a top‐down analysis, it was shown that all three sites exhibit similar behaviour in terms of their overall response to drought. In contrast to common assumptions, at all sites ecosystem respiration revealed a decreasing temperature sensitivity ( Q 10) in response to drought. Soil temperature and soil water content explained 70–80% of the seasonal variability of ecosystem respiration. During the drought, light‐saturated ecosystem gross carbon uptake and day‐time averaged canopy conductance declined by up to 90%. These changes were closely related to soil water content. Ecosystem water‐use efficiency of gross carbon uptake decreased during the drought, regardless whether evapotranspiration from eddy covariance or transpiration from sapflow had been used for the calculation. We evidence that this clearly contrasts current models of canopy function which predict increasing ecosystem water‐use efficiency (WUE) during the drought. Four potential explanations to those results were identified (patchy stomatal closure, changes in physiological capacities of photosynthesis, decreases in mesophyll conductance for CO2, and photoinhibition), which will be tested in a forthcoming paper. It is suggested to incorporate the new findings into current biogeochemical models after further testing as this will improve estimates of climate change effects on (semi)arid ecosystems' carbon balances.  相似文献   
26.
The hypervariable region 1 (HVR-1) of the putative envelope encoding E2 region of hepatitis C virus (HCV) RNA was analyzed in sequential samples from three patients with acute type C hepatitis infected from different sources to address (i) the dynamics of intrahost HCV variability during the primary infection and (ii) the role of host selective pressure in driving viral genetic evolution. HVR-1 sequences from 20 clones per each point in time were analyzed after amplification, cloning, and purification of plasmid DNA from single colonies of transformed cells. The intrasample evolutionary analysis (nonsynonymous mutations per nonsynonymous site [Ka], synonymous mutations per synonymous site [Ks], Ka/Ks ratio, and genetic distances [gd]) documented low gd in early samples (ranging from 2.11 to 7.79%) and a further decrease after seroconversion (from 0 to 4.80%), suggesting that primary HCV infection is an oligoclonal event, and found different levels and dynamics of host pressure in the three cases. The intersample analysis (pairwise comparisons of intrapatient sequences; rKa, rKs, rKa/rKs ratio, and gd) confirmed the individual features of HCV genetic evolution in the three subjects and pointed to the relative contribution of either neutral evolution or selective forces in driving viral variability, documenting that adaptation of HCV for persistence in vivo follows different routes, probably representing the molecular counterpart of the viral fitness for individual environments.  相似文献   
27.
Arabinogalactan-proteins are a family of highly glycosylated hydroxyproline-rich glycoproteins widely distributed in the plant kingdom and mainly located at the cell surface. Because of their great heterogeneity, abundance and ubiquitous localization, arabinogalactan-proteins are thought to play important and different roles in plant growth and development. Many evidences also indicate a role of arabinogalactan-proteins during reproduction as well as in response to stress conditions. In the present work, we investigated the distribution of arabinogalactan-proteins recognised by JIM8 antibody in pistils of Solanum lycopersicum cv Micro-Tom heat-stressed for 3 h at 42 °C at different developmental stages (5 and 10 days before anthesis). Our results indicate that high temperature strongly affects the distribution and content of arabinogalactan-proteins in stigma and ovule, particularly in samples heat-stressed 5 days before anthesis. In stigmas, cells exhibited an altered pattern of JIM8-labelled AGPs, dispersed and less abundant. In ovules, the embryo sac-surrounding cells showed a clear reduction in the content of JIM8-labelled arabinogalactan proteins. These evidences suggest that heat stress affects both content and distribution of AGPs. Considering the role of AGPs in plant reproduction, from the acquisition of stigmatic receptivity to pollen guidance into the ovule, we can suppose that high temperature affects all these processes through the alteration of AGPs.  相似文献   
28.
The two eggplant relatives Solanum aethiopicum gr. Gilo and Solanum aethiopicum gr. Aculeatum (=Solanum integrifolium) carry resistance to the fungal wilt disease caused by Fusarium oxysporum f. sp. melongenae, a worldwide soil-borne disease of eggplant. To introgress the resistance trait into cultivated eggplant, the tetraploid somatic hybrids S. melongena S. aethiopicum and S. melongena + S. integrifolium were used. An inheritance study of the resistance was performed on advanced anther culture-derived androgenetic backcross progenies from the two somatic hybrids. The segregation fitted a 3 resistant (R): 1 susceptible (S) ratio in the selfed populations and a 1R:1S ratio in the backcross progenies for the trait derived from S. aethiopicum and S. integrifolium. These ratios are consistent with a single gene, which we designated as Rfo-sa1, controlling the resistance to Fusarium oxysporum f. sp. melongenae. The allelic relationship between the resistance genes from S. aethiopicum and S. integrifolium indicate that these two genes are alleles of the same locus. Bulked Segregant Analysis (BSA) was performed with RAPD markers on the BC3/BC5 resistant advanced backcross progenies, and three RAPD markers associated with the resistance trait were identified. Cleaved Amplified Polymorphic Sequences (CAPSs) were subsequently obtained on the basis of the amplicon sequences. The evaluation of the efficiency of these markers in predicting the resistant phenotype in segregating progenies revealed that they represent useful tools for indirect selection of Fusarium resistance in eggplant.  相似文献   
29.
30.
Human serum albumin (HSA) participates in heme scavenging, the bound heme turning out to be a reactivity center and a powerful spectroscopic probe. Here, the reversible unfolding of heme–HSA has been investigated by 1H-NMR relaxometry, circular dichroism, and absorption spectroscopy. In the presence of 6 equiv of myristate (thus fully saturating all available fatty acid binding sites in serum heme–albumin), 1.0 M guanidinium chloride induces some unfolding of heme–HSA, leading to the formation of a folding intermediate; this species is characterized by increased relaxivity and enhanced dichroism signal in the Soret region, suggesting a more compact heme pocket conformation. Heme binds to the folding intermediate with K d = (1.2 ± 0.1) × 10−6 M. In the absence of myristate, the conformation of the folding intermediate state is destabilized and heme binding is weakened [K d = (3.4 ± 0.1) × 10−5 M]. Further addition of guanidinium chloride (up to 5 M) brings about the usual denaturation process. In conclusion, myristate protects HSA from unfolding, stabilizing a folding intermediate state in equilibrium with the native and the fully unfolded protein, envisaging a two-step unfolding pathway for heme–HSA in the presence of myristate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号