首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4278篇
  免费   329篇
  2022年   53篇
  2021年   90篇
  2020年   45篇
  2019年   50篇
  2018年   85篇
  2017年   68篇
  2016年   117篇
  2015年   131篇
  2014年   217篇
  2013年   239篇
  2012年   276篇
  2011年   270篇
  2010年   175篇
  2009年   145篇
  2008年   222篇
  2007年   195篇
  2006年   206篇
  2005年   176篇
  2004年   157篇
  2003年   140篇
  2002年   117篇
  2001年   121篇
  2000年   83篇
  1999年   82篇
  1998年   44篇
  1997年   33篇
  1996年   31篇
  1995年   34篇
  1994年   36篇
  1993年   35篇
  1992年   66篇
  1991年   60篇
  1990年   60篇
  1989年   49篇
  1988年   40篇
  1987年   51篇
  1986年   41篇
  1985年   49篇
  1984年   45篇
  1983年   34篇
  1982年   34篇
  1981年   23篇
  1979年   31篇
  1978年   22篇
  1977年   32篇
  1975年   24篇
  1973年   25篇
  1972年   22篇
  1969年   30篇
  1967年   19篇
排序方式: 共有4607条查询结果,搜索用时 31 毫秒
161.
Telomeres are critical for cell survival and functional integrity. Oxidative DNA damage induces telomeric instability and cellular senescence that are associated with normal aging and segmental premature aging disorders such as Werner Syndrome and Rothmund–Thomson Syndrome, caused by mutations in WRN and RECQL4 helicases respectively. Characterizing the metabolic roles of RECQL4 and WRN in telomere maintenance is crucial in understanding the pathogenesis of their associated disorders. We have previously shown that WRN and RECQL4 display a preference in vitro to unwind telomeric DNA substrates containing the oxidative lesion 8-oxoguanine. Here, we show that RECQL4 helicase has a preferential activity in vitro on telomeric substrates containing thymine glycol, a critical lesion that blocks DNA metabolism, and can be modestly stimulated further on a D-loop structure by TRF2, a telomeric shelterin protein. Unlike that reported for telomeric D-loops containing 8-oxoguanine, RECQL4 does not cooperate with WRN to unwind telomeric D-loops with thymine glycol, suggesting RECQL4 helicase is selective for the type of oxidative lesion. RECQL4's function at the telomere is not yet understood, and our findings suggest a novel role for RECQL4 in the repair of thymine glycol lesions to promote efficient telomeric maintenance.  相似文献   
162.
Combination therapy is being increasingly used as a treatment paradigm for metabolic diseases such as diabetes and obesity. In the peptide therapeutics realm, recent work has highlighted the therapeutic potential of chimeric peptides that act on two distinct receptors, thereby harnessing parallel complementary mechanisms to induce additive or synergistic benefit compared to monotherapy. Here, we extend this hypothesis by linking a known anti-diabetic peptide with an anti-obesity peptide into a novel peptide hybrid, which we termed a phybrid. We report on the synthesis and biological activity of two such phybrids (AC164204 and AC164209), comprised of a glucagon-like peptide-1 receptor (GLP1-R) agonist, and exenatide analog, AC3082, covalently linked to a second generation amylin analog, davalintide. Both molecules acted as full agonists at their cognate receptors in vitro, albeit with reduced potency at the calcitonin receptor indicating slightly perturbed amylin agonism. In obese diabetic Lepob/Lep ob mice sustained infusion of AC164204 and AC164209 reduced glucose and glycated haemoglobin (HbA1c) equivalently but induced greater weight loss relative to exenatide administration alone. Weight loss was similar to that induced by combined administration of exenatide and davalintide. In diet-induced obese rats, both phybrids dose-dependently reduced food intake and body weight to a greater extent than exenatide or davalintide alone, and equal to co-infusion of exenatide and davalintide. Phybrid-mediated and exenatide + davalintide-mediated weight loss was associated with reduced adiposity and preservation of lean mass. These data are the first to provide in vivo proof-of-concept for multi-pathway targeting in metabolic disease via a peptide hybrid, demonstrating that this approach is as effective as co-administration of individual peptides.  相似文献   
163.
The stability of Watson–Crick paired RNA/DNA hybrids is important for designing optimal oligonucleotides for ASO (Antisense Oligonucleotide) and CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)–Cas9 techniques. Previous nearest-neighbour (NN) parameters for predicting hybrid stability in a 1 M NaCl solution, however, may not be applicable for predicting stability at salt concentrations closer to physiological condition (e.g. ∼100 mM Na+ or K+ in the presence or absence of Mg2+). Herein, we report measured thermodynamic parameters of 38 RNA/DNA hybrids at 100 mM NaCl and derive new NN parameters to predict duplex stability. Predicted ΔG°37 and Tm values based on the established NN parameters agreed well with the measured values with 2.9% and 1.1°C deviations, respectively. The new results can also be used to make precise predictions for duplexes formed in 100 mM KCl or 100 mM NaCl in the presence of 1 mM Mg2+, which can mimic an intracellular and extracellular salt condition, respectively. Comparisons of the predicted thermodynamic parameters with published data using ASO and CRISPR–Cas9 may allow designing shorter oligonucleotides for these techniques that will diminish the probability of non-specific binding and also improve the efficiency of target gene regulation.  相似文献   
164.
Dilated cardiomyopathy (DCM) is associated with mutations in cardiomyocyte sarcomeric proteins, including α-tropomyosin. In conjunction with troponin, tropomyosin shifts to regulate actomyosin interactions. Tropomyosin molecules overlap via tropomyosin–tropomyosin head-to-tail associations, forming a continuous strand along the thin filament. These associations are critical for propagation of tropomyosin''s reconfiguration along the thin filament and key for the cooperative switching between heart muscle contraction and relaxation. Here, we tested perturbations in tropomyosin structure, biochemistry, and function caused by the DCM-linked mutation, M8R, which is located at the overlap junction. Localized and nonlocalized structural effects of the mutation were found in tropomyosin that ultimately perturb its thin filament regulatory function. Comparison of mutant and WT α-tropomyosin was carried out using in vitro motility assays, CD, actin co-sedimentation, and molecular dynamics simulations. Regulated thin filament velocity measurements showed that the presence of M8R tropomyosin decreased calcium sensitivity and thin filament cooperativity. The co-sedimentation of actin and tropomyosin showed weakening of actin-mutant tropomyosin binding. The binding of troponin T''s N terminus to the actin-mutant tropomyosin complex was also weakened. CD and molecular dynamics indicate that the M8R mutation disrupts the four-helix bundle at the head-to-tail junction, leading to weaker tropomyosin–tropomyosin binding and weaker tropomyosin–actin binding. Molecular dynamics revealed that altered end-to-end bond formation has effects extending toward the central region of the tropomyosin molecule, which alter the azimuthal position of tropomyosin, likely disrupting the mutant thin filament response to calcium. These results demonstrate that mutation-induced alterations in tropomyosin–thin filament interactions underlie the altered regulatory phenotype and ultimately the pathogenesis of DCM.  相似文献   
165.
The low engraftment and retention rate of mesenchymal stem cells (MSCs) at the target site indicates that the potential benefits of MSC-based therapies can be attributed to their paracrine signaling. In this study, the extracellular matrices (ECMs) deposited by bone marrow-derived human MSCs in the presence and absence of ascorbic acid was characterized. MSCs were seeded on top of decellularized ECM (dECM) and the concentrations of proangiogenic and antiangiogenic molecules released in culture (conditioned) media was compared. Effects of ECM derived from MSCs with different passage numbers on MSC secretome was also investigated. Our study revealed that the expression of proangiogenesis-related factors were upregulated when MSCs were harvested on dECMs, irrespective of media supplementation, as compared with those cultured on tissue culture plates. In addition, dECM generated in the presence of ascorbic acid promoted the expression of proangiogenic molecules as compared with dECM-derived in absence of media supplementation. Further, it was observed that the effectiveness of dECM to stimulate proangiogenic signaling of MSCs was reduced as cell passage number was increased from P3 to P5. The proliferation as well as capillary morphogenesis of human umbilical vein endothelial cells (HUVECs) in the presence of conditioned media were enhanced compared with the normal HUVECs culture media. These data indicate that the secretory signatures of MSCs and consequently, the therapeutic efficacy of MSCs can be regulated by presentation of dECM composition and variation of its composition.  相似文献   
166.
167.
Dry root rot caused by Rhizoctonia bataticola (Macrophomina phaseolina) of chickpea (Cicer arietinum L.) is gaining importance in the changed scenario of climate when growing crop is predisposed to high temperature and moisture stress. Being mainly a soil-inhabiting pathogen, many environmental and soil factors are responsible for the development of disease. No systematic research related to the biology, ecology and epidemiology of dry root rot in chickpea has been conducted so far. Research is needed to improve the identification and characterisation of variability within its epidemiological and pathological niches. Limited literature available on host plant resistance for dry root rot indicated lack of resistant sources for this disease. The present article discusses current status of the disease in the context of climate change and possible management options to alleviate the problem.  相似文献   
168.
Rohu (Labeo rohita) fingerlings, were fed de-oiled Jatropha curcas seed meal (DJSM) supplemented diets for 60 days and the effectiveness, if any, on the growth was evaluated. Nine isonitrogenous (35 % crude protein) and isocaloric (4.0 kcal g?1) diets were formulated of which one was reference diet (RD, fishmeal based control diet) and the other eight were experimental diets prepared by incorporating raw (D1–D4) and fermented (D5–D8) DJSM at 10, 20, 30 and 40 % levels by weight, respectively. Autoclaved DJSM was processed through solid state fermentation (SSF) for 15 days at 37 ± 1 °C by an exo-enzyme producing bacterium, Bacillus cereus Lr.H.23 isolated from the hindgut of rohu, L. rohita. Processing through SSF caused decrease in the contents of crude fibre and anti-nutritional factors, but increase in the levels of free amino acids and free fatty acids. In terms of growth performance, feed utilization efficiency and apparent protein digestibility, fish fed diet D7 containing 30 % fermented DJSM showed the best performance, which differed significantly (P < 0.05) from that of the fish fed diets containing raw DJSM. The results indicated that an inclusion level up to 30 % fermented DJSM replacing 15 % FM in the practical diet for rohu fingerlings can be proposed when compared to the RD. However, further experiments are required to recommend the ingredient for use in industry.  相似文献   
169.
170.
EMBO J 32 13, 1817–1828 doi:10.1038/emboj.2013.96; published online April262013During evolution, the mammalian brain massively expanded its size. However, the exact roles of distinct neural precursors, identified in the developing cortex during embryogenesis, for size expansion and surface folding (i.e., gyration) remain largely unknown. New findings by Nonaka-Kinoshita et al advance our understanding of embryonic neural precursor function by identifying cell type-selective functions for size expansion and folding, and challenge previously held concepts of mammalian brain development.Over the course of evolution, the mammalian brain massively expanded its size and complexity, which is believed to be responsible for an increase in cognitive functions and intellectual skills. The increase in brain size and number of cortical neurons is primarily due to an increased surface area by generating folds (gyrations) while the cortical thickness remained relatively constant (Lui et al, 2011). In the last decade, substantial progress has been made in identifying the cellular sources of cortex development. Using genetic lineage tracing of individual cell populations and time-lapse imaging of rodent and human slices of the embryonic cortex, radial glial cells (RGCs) were identified as the primary progenitors or neural stem cells (NSCs) in the developing cortex (Gotz and Huttner, 2005). Simplified, RG in the ventricular zone (VZ) line the ventricular surface and self-renew through symmetric divisions or give rise to basal progenitors (BPs; also called intermediate progenitors) in the subventricular zone (SVZ) that typically divide symmetrically and generate neurons. In contrast to the lissencephalic rodent brain, the developing cortex of gyrated mammals (e.g., humans and ferrets) contains a large number of basal radial glial (bRG) cells that reside in the outer subventricular zone (OSVZ), retain a cellular process that is connected to the pial surface and that are, in contrast to BPs, multipotent, meaning that they have the potency to generate diverse neural cell types (Fietz et al, 2010; Hansen et al, 2010; Reillo et al, 2011).Largely based on the anatomical differences between the developing cortex of lissencephalic and gyrencephalic brains, several hypotheses have been formulated aiming to explain the massive increase in size and induction of brain folding during mammalian evolution. One prominent hypothesis, called the radial unit hypothesis, suggests that the expansion of RGCs lining the ventricle leads to an increase of radial units that generate neurons and thus is responsible for the increase of surface area (Rakic, 1995). Others proposed that the increase in size and folding could be due to an increase in BP expansion in the SVZ compared to RGC numbers in the VZ, a hypothesis called the intermediate progenitor model (Kriegstein et al, 2006). These hypotheses were helpful to start explaining mammalian brain evolution, but testing the exact role of different neural precursors remained extremely challenging due to technical difficulties to selectively manipulating the proliferative activity of distinct precursor populations. Even though previous approaches were successful in enhancing brain size/neuron numbers in mouse models (e.g., by ectopically enhancing WNT signalling activity or manipulating the activity of the small RhoGTPase Cdc42 in neural precursors), these strategies had the drawback that the normal six-layered cortical topography was disrupted, making it difficult to draw definite conclusions (Chenn and Walsh, 2002; Cappello et al, 2006).In a collaborative work from the Calegari and Borrell laboratories, Nonaka-Kinoshita et al, 2013 now used an elegant approach to selectively enhance proliferation of distinct precursor populations in the mouse and ferret developing cortex. They used a previously described approach manipulating cell cycle length and subsequently proliferation by overexpressing the cell cycle regulators cdk4 and cyclinD1 that is sufficient to enhance neurogenesis without affecting cortical layering (a system called 4D) (Lange et al, 2009). For their mouse experiments, Nonaka-Kinoshita et al used a transgenic strategy to transiently overexpress 4D in nestin-expressing precursors using a tetracycline-controlled gene expression system (nestinrtTA/tetbi4D). With this approach, they selectively enhanced proliferation of BPs in the SVZ without affecting the number or proliferation of RGCs in the VZ (Nonaka-Kinoshita et al, 2013). Strikingly, targeted expansion of BPs induced a substantial increase in surface area but was not sufficient to induce cortical folding in the otherwise smooth mouse cortex, challenging the radial unit hypothesis and the intermediate progenitor model with regard to their predictions on the effects on size and/or gyration of the cortex upon expansion of the BP pool. Complementing their findings of BP expansion in the lissencephalic mouse brain, Nonaka-Kinoshita et al used retroviral vectors and electroporation of 4D expression constructs to target 4D expression to neural precursors in the developing ferret cortex that is gyrated under physiological conditions. In the ferret, 4D expression induced proliferation of multipotent bRG located in the OSVZ, as outlined above, a cell type that is found predominantly in gyrated cortices compared to lissencephalic brains. Notably, enhanced proliferation of bRG triggered the formation of novel cortical folds, suggesting that indeed the expansion of bRG may represent a key event during evolution to induce gyration and subsequent surface expansion of the mammalian brain (Borrell and Reillo, 2012; Nonaka-Kinoshita et al, 2013) (Figure 1). This now experimentally supported hypothesis is strongly reinforced by two recent publications: one from (Tuoc et al, 2013) who found that deletion of the chromatin remodelling protein BAF170 increases the BP pool and subsequently enhances brain size; and another one from the Götz laboratory where it was found that experimentally reduced expression levels of the DNA-associated protein Trnp1 substantially increased the expansion of bRG and BPs, inducing folding of the normally lissencephalic mouse brain (Stahl et al, 2013). Taken together, these studies suggest that bRG in the OSVZ play an important role in cortical folding by enhancing the generation of neurons and by providing a glial scaffold for newborn neurons to disperse more laterally and thus to form folds in the developing brain (Reillo et al, 2011).Open in a separate windowFigure 1How different neural precursors appear to regulate size expansion and folding during mammalian brain development. (A) Shown are the main cellular components of the cortex of the lissencephalic mouse brain during embryonic development with RGCs (blue) lining the lateral ventricles in the VZ that generate BPs (yellow) in the SVZ and provide a scaffold for migrating neurons (left; green). Note that the mouse developing brain contains only a few bRG in the OSVZ (red). Notably, expansion of BPs using the 4D strategy developed in the Calegari laboratory increases surface area of the murine cortex without inducing the folding of the smooth mouse brain surface (right panel). (B) In contrast to lissencephalic animals, the developing cortices of species with gyrated brains (e.g., humans and ferrets) contain a substantial number of bRG located in the OSVZ (left panel). 4D-based, virus-mediated expansion of bRG in the ferret cortex leads to the induction of additional folds in the ferret cortex, indicating that the proliferative activity of bRG is critically involved in the extent of folding in physiologically gyrated brains (right panel).Even though this new study challenges previously held concepts regarding size expansion and folding of the mammalian brain, future studies are required that even more selectively enhance the proliferation and expansion of distinct precursor subtypes with high temporal and spatial control. Thus, the combination of sophisticated genetic tools to enhance precursor activity with detailed molecular analyses (e.g., analysing gene expression in highly folded versus unfolded brain regions, an approach that already showed differential levels of Trnp1 expression; Stahl et al, 2013) and live-imaging studies in the developing mammalian cortex will further enhance the understanding how our brains developed during evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号