首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4194篇
  免费   321篇
  4515篇
  2022年   54篇
  2021年   83篇
  2020年   46篇
  2019年   49篇
  2018年   83篇
  2017年   67篇
  2016年   114篇
  2015年   128篇
  2014年   215篇
  2013年   233篇
  2012年   269篇
  2011年   265篇
  2010年   167篇
  2009年   144篇
  2008年   219篇
  2007年   188篇
  2006年   201篇
  2005年   170篇
  2004年   156篇
  2003年   137篇
  2002年   113篇
  2001年   119篇
  2000年   83篇
  1999年   82篇
  1998年   39篇
  1997年   31篇
  1996年   31篇
  1995年   33篇
  1994年   36篇
  1993年   34篇
  1992年   65篇
  1991年   60篇
  1990年   60篇
  1989年   47篇
  1988年   40篇
  1987年   50篇
  1986年   40篇
  1985年   47篇
  1984年   45篇
  1983年   33篇
  1982年   34篇
  1981年   23篇
  1979年   31篇
  1978年   22篇
  1977年   32篇
  1975年   24篇
  1973年   24篇
  1972年   22篇
  1969年   30篇
  1967年   19篇
排序方式: 共有4515条查询结果,搜索用时 15 毫秒
71.
Herein, we evaluate the binding of Pb(II) and Bi(III) to cysteine-substituted versions of the TRI peptides [AcG-(LKALEEK)4G-NH2] which have previously been shown to bind Hg(II) and Cd(II) in unusual geometries as compared with small-molecule thiol ligands in aqueous solutions. Studies of Pb(II) and Bi(III) with the peptides give rise to complexes consistent with the metal ions bound to three sulfur atoms with M–S distances of 2.63 and 2.54 Å, respectively. Competition experiments between the metal ions Pb(II), Cd(II), Hg(II) and Bi(III) for the peptides show that Hg(II) has the highest affinity, owing to the initial formation of the extremely strong HgS2 bond. Cd(II) and Pb(II) have comparable binding affinities at pH > 8, while Bi(III) displays the weakest affinity, following the model, M(II) + (TRI LXC)3 3? → M(II)(TRI LXC)3 ?. While the relevant equilibria for Hg(II) binding to the TRI peptides corresponds to a strong first step forming Hg(TRI LXC)2(HTRI LXC), followed by a single deprotonation to give Hg(TRI LXC)3 ?, the binding of Cd(II) and Pb(II) is consistent with initial formation of M(II)(TRI LXC)(HTRI LXC)2 + at pH < 5 followed by a two-proton dissociation step (pK a2) yielding M(II)(TRI LXC)3 ?. Pb(II)(TRI LXC)(HTRI LXC)2 + converts to Pb(II)(TRI LXC)3 ? at slightly lower pH values than the corresponding Cd(II)–peptide complexes. In addition, Pb(II) displays a lower pK a of binding to the “d”-substituted peptide, (TRI L12C, pK a2 = 12.0) compared with the “a”-substituted peptide, (TRI L16C, pK a2 = 12.6), the reverse of the order seen for Hg(II) and Cd(II). Pb(II) also showed a stronger binding affinity for TRI L12C (K bind = 3.2 × 107 M?1) compared with that with TRI L16C (K bind = 1.2 × 107 M?1) at pH > 8.  相似文献   
72.
Ramos E  Ghosh D  Baxter E  Corces VG 《Genetics》2006,172(4):2337-2349
Chromatin insulators have been implicated in the regulation of higher-order chromatin structure and may function to compartmentalize the eukaryotic genome into independent domains of gene expression. To test this possibility, we used biochemical and computational approaches to identify gypsy-like genomic-binding sites for the Suppressor of Hairy-wing [Su(Hw)] protein, a component of the gypsy insulator. EMSA and FISH analyses suggest that these are genuine Su(Hw)-binding sites. In addition, functional tests indicate that genomic Su(Hw)-binding sites can inhibit enhancer-promoter interactions and thus function as bona fide insulators. The insulator strength is dependent on the genomic location of the transgene and the number of Su(Hw)-binding sites, with clusters of two to three sites showing a stronger effect than individual sites. These clusters of Su(Hw)-binding sites are located mostly in intergenic regions or in introns of large genes, an arrangement that fits well with their proposed role in the formation of chromatin domains. Taken together, these data suggest that genomic gypsy-like insulators may provide a means for the compartmentalization of the genome within the nucleus.  相似文献   
73.
Importance of higher polyamines, spermidine, and spermine, in relation to the mechanism and adaptation to combat abiotic stress has been well established in cereals. Owing to their polycationic nature at physiological pH, polyamines bind strongly to negative charges in cellular components such as nucleic acids, various proteins, and phospholipids. To study the physiological role of polyamine during salinity stress, phosphorylation study was carried out in cytosolic soluble protein fraction isolated from the roots of salt tolerant (Nonabokra) and salt sensitive (M-1-48) rice cultivars treated with none (control), NaCl (150 mM, 16 h), spermidine (1 mM, 16 h) or with abscisic acid (100 μM, 16 h). A calcium independent auto regulatory 42 kDa protein kinase was found to phosphorylate myelin basic protein and casein but not histone. Interestingly, this was the only protein to be phosphorylated in root cytosolic fraction during NaCl/abscisic acid/spermidine treatment indicating its importance in salinity mediated signal transduction. This is the first report of polyamine as well as abscisic acid induced protein kinase activity in rice root in response to salinity stress.  相似文献   
74.
75.
76.
Protein quality control mechanisms decline during the process of cardiac aging. This enables the accumulation of protein aggregates and damaged organelles that contribute to age‐associated cardiac dysfunction. Macroautophagy is the process by which post‐mitotic cells such as cardiomyocytes clear defective proteins and organelles. We hypothesized that late‐in‐life exercise training improves autophagy, protein aggregate clearance, and function that is otherwise dysregulated in hearts from old vs. adult mice. As expected, 24‐month‐old male C57BL/6J mice (old) exhibited repressed autophagosome formation and protein aggregate accumulation in the heart, systolic and diastolic dysfunction, and reduced exercise capacity vs. 8‐month‐old (adult) mice (all < 0.05). To investigate the influence of late‐in‐life exercise training, additional cohorts of 21‐month‐old mice did (old‐ETR) or did not (old‐SED) complete a 3‐month progressive resistance treadmill running program. Body composition, exercise capacity, and soleus muscle citrate synthase activity improved in old‐ETR vs. old‐SED mice at 24 months (all < 0.05). Importantly, protein expression of autophagy markers indicate trafficking of the autophagosome to the lysosome increased, protein aggregate clearance improved, and overall function was enhanced (all < 0.05) in hearts from old‐ETR vs. old‐SED mice. These data provide the first evidence that a physiological intervention initiated late‐in‐life improves autophagic flux, protein aggregate clearance, and contractile performance in mouse hearts.  相似文献   
77.
MNNG-induced killing of V79 cells has been found to be enhanced on inhibition of topoisomerase II activity by nalidixic acid and poly(ADP-ribose) polymerase synthesis by benzamide. Using these 2 inhibitors in conjunction after MNNG treatment, some overlap in the functions of these 2 enzymes was observed. Nalidixic acid and benzamide were found to suppress the yields of mutations and SCEs induced by MNNG. Benzamide was more effective in suppressing the mutation yield whereas nalidixic acid was more effective in suppressing SCEs. A model based on the relative requirement of topoisomerase and poly(ADP-ribose) for the repair of different types of damage has been proposed to explain the results.  相似文献   
78.
Summary We have reported earlier that cholinephosphotransferase (EC 2.7.8.2) is present in both mitochondria and microsomes of fetal guinea pig lung. This study was designed to compare the properties of mitochondrial and microsomal cholinephosphotransferase in fetal guinea pig lung. Various parameters, such as substrate specificity, Km values, sensitivity to N-ethylmaleimide, dithiothreitol and trypsin were measured. Both showed significant preference for unsaturated diacylglycerols over saturated diacylglycerols. Data on Km and Vmax indicate that the affinity of this enzyme for different diacylglycerols varies between the two forms. The ID50 values for N-ethylmaleimide were 20 mM and 12.5 mM for the mitochondrial and microsomal form of the enzyme, respectively. Dithiothreitol showed an inhibitory effect on both; however, the mitochondrial form was inhibited less than the microsomal form. The effects of N-ethylmaleimide and dithiothreitol on both forms of enzyme indicated that the microsomal cholinephosphotransferase requires a higher concentration of -SH for its activity than the mitochondrial enzyme does. The enzyme was inhibited by trypsin in both mitochondria and microsome under isotonic condition suggesting that this enzyme is on the outside of the membrane in both endoplasmic reticulum and mitochondria.  相似文献   
79.
The methylerythritol phosphate (MEP) pathway of Plasmodium falciparum (P. falciparum) has become an attractive target for anti-malarial drug discovery. This study describes a kinetic model of this pathway, its use in validating 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) as drug target from the systemic perspective, and additional target identification, using metabolic control analysis and in silico inhibition studies. In addition to DXR, 1-deoxy-d-xylulose 5-phosphate synthase (DXS) can be targeted because it is the first enzyme of the pathway and has the highest flux control coefficient followed by that of DXR. In silico inhibition of both enzymes caused large decrement in the pathway flux. An added advantage of targeting DXS is its influence on vitamin B1 and B6 biosynthesis. Two more potential targets, 2-C-methyl-d-erythritol 2,4-cyclodiphosphate synthase and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase, were also identified. Their inhibition caused large accumulation of their substrates causing instability of the system.  相似文献   
80.
The virulence of a large number of Gram-negative bacterial pathogens depends on the type III secretion (T3S) system, which transports select bacterial proteins into host cells. An essential component of the Yersinia T3S system is YscD, a single-pass inner membrane protein. We report here the 2.52-Å resolution structure of the cytoplasmic domain of YscD, called YscDc. The structure confirms that YscDc consists of a forkhead-associated (FHA) fold, which in many but not all cases specifies binding to phosphothreonine. YscDc, however, lacks the structural properties associated with phosphothreonine binding and thus most likely interacts with partners in a phosphorylation-independent manner. Structural comparison highlighted two loop regions, L3 and L4, as potential sites of interactions. Alanine substitutions at L3 and L4 had no deleterious effects on protein structure or stability but abrogated T3S in a dominant negative manner. To gain insight into the function of L3 and L4, we identified proteins associated with YscD by affinity purification coupled to mass spectrometry. The lipoprotein YscJ was found associated with wild-type YscD, as was the effector YopH. Notably, the L3 and L4 substitution mutants interacted with more YopH than did wild-type YscD. These substitution mutants also interacted with SycH (the specific chaperone for YopH), the putative C-ring component YscQ, and the ruler component YscP, whereas wild-type YscD did not. These results suggest that substitutions in the L3 and L4 loops of YscD disrupted the dissociation of SycH from YopH, leading to the accumulation of a large protein complex that stalled the T3S apparatus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号