首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4829篇
  免费   355篇
  5184篇
  2022年   65篇
  2021年   101篇
  2020年   57篇
  2019年   62篇
  2018年   93篇
  2017年   90篇
  2016年   134篇
  2015年   151篇
  2014年   244篇
  2013年   274篇
  2012年   330篇
  2011年   324篇
  2010年   203篇
  2009年   165篇
  2008年   253篇
  2007年   214篇
  2006年   240篇
  2005年   199篇
  2004年   177篇
  2003年   157篇
  2002年   137篇
  2001年   134篇
  2000年   101篇
  1999年   89篇
  1998年   39篇
  1997年   33篇
  1996年   32篇
  1995年   38篇
  1994年   37篇
  1993年   34篇
  1992年   66篇
  1991年   62篇
  1990年   63篇
  1989年   48篇
  1988年   43篇
  1987年   56篇
  1986年   43篇
  1985年   52篇
  1984年   52篇
  1983年   35篇
  1982年   35篇
  1981年   24篇
  1979年   36篇
  1978年   23篇
  1977年   33篇
  1975年   24篇
  1973年   25篇
  1972年   25篇
  1969年   31篇
  1967年   19篇
排序方式: 共有5184条查询结果,搜索用时 0 毫秒
101.
A new class of chimeric molecules have been developed. These are based on polyphenols like catechin and epicatechin and monocyclic β-lactams. The two units are joined via a triazole linker using the ‘Click Chemistry’ conditions. The compounds showed good to weak antibacterial activity against Escherichia coli as well as moderate inhibition of RNase A.  相似文献   
102.
103.
104.
The vaccinia virus D5 gene encodes a 90-kDa protein that is transiently expressed at early times after infection. Temperature-sensitive mutants with lesions in the D5 gene exhibit a fast-stop DNA- phenotype and are also impaired in homologous recombination. Here we report the overexpression of the D5 protein within the context of a vaccinia virus infection and its purification to apparent homogeneity. The purified protein has an intrinsic nucleoside triphosphatase activity which is independent of, and not stimulated by, any common nucleic acid cofactors. All eight common ribo- and deoxyribonucleoside triphosphates are hydrolyzed to the diphosphate form in the presence of a divalent cation. Implications for the role of D5 in viral DNA replication are addressed.  相似文献   
105.
Highly toxic mercury compounds may come into the environment through the use of mercury compounds as disinfectants for hospital and household purposes, Hg catalyst in industries, burning of coal and petroleum products, mercury-based pesticides and fungicides used in agriculture, and seed dressings. Toxic effects of mercury can be counteracted by microbial cells through the enzymes mercuric reductase and organomercurial lyase. Immobilized mercury-resistant bacterial cells of Azotobacter chroococcum could effectively volatilize mercury from mercury-containing buffer and detoxify mercury compounds. Moreover, the efficiency of mercury volatilization was much greater than with the native cells, as immobilized cells can be reused. Immobilized cells continuously volatilized mercury from mercury-containing buffer after four consecutive 24 h cycles. The storage stability of immobilized cells was much better than that of the native cells.  相似文献   
106.
A beta-glucosidase with cellobiase activity was purified to homogeneity from the culture filtrate of the mushroom Termtomyces clypeatus. The enzyme had optimum activity at pH 5.0 and temperature 65 degrees C and was stable up to 60 degrees C and within pH 2-10. Among the substrates tested, p-nitrophenyl-beta-D-glucopyranoside and cellobiose were hydrolysed best by the enzyme. Km and Vm values for these substrates were 0.5, 1.25 mM and 95, 91 mumol/min per mg, respectively. The enzyme had low activity towards gentiobiose, salicin and beta-methyl-D-glucoside. Glucose and cellobiose inhibited the beta-D-glucosidase (PNPGase) activity competitively with Ki of 1.7 and 1.9 mM, respectively. Molecular mass of the native enzyme was approximated to be 450 kDa by HPLC, whereas sodium dodecyl sulphate polyacrylamide gel electrophoresis indicated a molecular mass of 110 kDa. The high molecular weight enzyme protein was present both intracellularly and extracellularly from the very early growth phase. The enzyme had a pI of 4.5 and appeared to be a glycoprotein.  相似文献   
107.
During the last two decades, new insights into proteasome function and its role in several human diseases made it a potential therapeutic target. In this context, Amblyomin-X is a Kunitz-type FXa inhibitor similar to endogenous tissue factor pathway inhibitor (TFPI) and is a novel proteasome inhibitor. Herein, we have demonstrated Amblyomin-X cytotoxicity to different tumor cells lines such as pancreatic (Panc1, AsPC1BxPC3) and melanoma (SK-MEL-5 and SK-MEL-28). Of note, Amblyomin-X was not cytotoxic to normal human fibroblast cells. In addition, Amblyomin-X promoted accumulation of ER stress markers (GRP78 and GADD153) in sensitive (SK-MEL-28) and bortezomib-resistant (Mia-PaCa-2) tumor cells. The intracellular calcium concentration [Ca2+] i was slightly modulated in human tumor cells (SK-MEL-28 and Mia-PaCa-2) after 24 h of Amblyomin-X treatment. Furthermore, Amblyomin-X induced mitochondrial dysfunction, cytochrome-c release, PARP cleavage, and activation of caspase cascade in both human tumor (SK-MEL-28 and Mia-PaCa-2) cells. These investigations might help in further understanding of the antitumor properties of Amblyomin-X.  相似文献   
108.
Visual stimuli produce waves of activity that propagate across the visual cortex of fresh water turtles. This study used a large-scale model of the cortex to examine the roles of specific types of cortical neurons in controlling the formation, speed and duration of these waves. The waves were divided into three components: initial depolarizations, primary propagating waves and secondary waves. The maximal conductances of each receptor type postsynaptic to each population of neurons in the model was systematically varied and the speed of primary waves, durations of primary waves and total wave durations were measured. The analyses indicate that wave formation and speed are controlled principally by feedforward excitation and inhibition, while wave duration is controlled principally by recurrent excitation and feedback inhibition.  相似文献   
109.
World health organization has called for academic research and development of new chemotherapeutic strategies to overcome the emerging resistance and side effects exhibited by the drugs currently used against leishmaniasis. Diospyrin, a bis-naphthoquinone isolated from Diospyros montana Roxb., and its semi-synthetic derivatives, were reported for inhibitory activity against protozoan parasites including Leishmania. Presently, we have investigated the antileishmanial effect of a di-epoxide derivative of diospyrin (D17), both in vitro and in vivo. Further, the safety profile of D17 was established by testing its toxicity against normal macrophage cells (IC50 ∼ 20.7 μM), and also against normal BALB/c mice in vivo. The compound showed enhanced activity (IC50 ∼ 7.2 μM) as compared to diospyrin (IC50 ∼ 12.6 μM) against Leishmania donovani promastigotes. Again, D17 was tested on L. donovani BHU1216 isolated from a sodium stibogluconate-unresponsive patient, and exhibited selective inhibition of the intracellular amastigotes (IC50 ∼ 0.18 μM). Also, treatment of infected BALB/c mice with D17 at 2 mg/kg/day reduced the hepatic parasite load by about 38%. Subsequently, computational docking studies were undertaken on selected enzymes of trypanothione metabolism, viz. trypanothione reductase (TryR) and ornithine decarboxylase (ODC), followed by the enzyme kinetics, where D17 demonstrated non-competitive inhibition of the L. donovani ODC, but could not inhibit TryR.  相似文献   
110.
Apigenin, a natural flavone, present in many plants sources, induced apoptosis and cell death in lung epithelium cancer (A549) cells with an IC50 value of 93.7 ± 3.7 μM for 48 h treatment. Target identification investigations using A549 cells and also in cell-free system demonstrated that apigenin depolymerized microtubules and inhibited reassembly of cold depolymerized microtubules of A549 cells. Again apigenin inhibited polymerization of purified tubulin with an IC50 value of 79.8 ± 2.4 μM. It bounds to tubulin in cell-free system and quenched the intrinsic fluorescence of tubulin in a concentration- and time-dependent manner. The interaction was temperature-dependent and kinetics of binding was biphasic in nature with binding rate constants of 11.5 × 10−7 M−1 s−1 and 4.0 × 10−9 M−1 s−1 for fast and slow phases at 37 °C, respectively. The stoichiometry of tubulin–apigenin binding was 1:1 and binding the binding constant (Kd) was 6.08 ± 0.096 μM. Interestingly, apigenin showed synergistic anti-cancer effect with another natural anti-tubulin agent curcumin. Apigenin and curcumin synergistically induced cell death and apoptosis and also blocked cell cycle progression at G2/M phase of A549 cells. The synergistic activity of apigenin and curcumin was also apparent from their strong depolymerizing effects on interphase microtubules and inhibitory effect of reassembly of cold depolymerized microtubules when used in combinations, indicating that these ligands bind to tubulin at different sites. In silico modeling suggested apigenin bounds at the interphase of α–β-subunit of tubulin. The binding site is 19 Å in distance from the previously predicted curcumin binding site. Binding studies with purified protein also showed both apigenin and curcumin can simultaneously bind to purified tubulin. Understanding the mechanism of synergistic effect of apigenin and curcumin could be helped to develop anti-cancer combination drugs from cheap and readily available nutraceuticals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号