首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4284篇
  免费   323篇
  4607篇
  2022年   58篇
  2021年   87篇
  2020年   51篇
  2019年   57篇
  2018年   88篇
  2017年   68篇
  2016年   114篇
  2015年   131篇
  2014年   218篇
  2013年   239篇
  2012年   278篇
  2011年   269篇
  2010年   175篇
  2009年   141篇
  2008年   222篇
  2007年   197篇
  2006年   211篇
  2005年   179篇
  2004年   159篇
  2003年   136篇
  2002年   113篇
  2001年   119篇
  2000年   83篇
  1999年   82篇
  1998年   39篇
  1997年   31篇
  1996年   31篇
  1995年   33篇
  1994年   36篇
  1993年   34篇
  1992年   65篇
  1991年   60篇
  1990年   60篇
  1989年   47篇
  1988年   41篇
  1987年   50篇
  1986年   40篇
  1985年   47篇
  1984年   45篇
  1983年   33篇
  1982年   34篇
  1981年   23篇
  1979年   31篇
  1978年   22篇
  1977年   32篇
  1975年   24篇
  1973年   24篇
  1972年   22篇
  1969年   30篇
  1967年   19篇
排序方式: 共有4607条查询结果,搜索用时 15 毫秒
991.
The role of the redox potential in insulin secretion by beta cells stimulated with high glucose was investigated using an in vitro pancreas perfusion system. To assess glycolytic flux the sum of fructose-1,6-P2 + triose-P was determined in pure beta cells microdissected from lyophilized sections of the isolated perfused pancreas quick frozen during the early insulin secretory response. L-Glycerol 3-phosphate and dihydroxyacetone phosphate were measured as indicators of the free cytosolic [NAD+]/[NADH] ratio and NADH and NADPH were also measured. Fructose-1,6-P2 + triose-P was increased in beta cells simultaneously with the onset of insulin secretion indicating an increase in glucose metabolism had occurred. The ratio of [dihydroxyacetone phosphate]/[L-glycerol 3-phosphate] increased simultaneously with the onset of insulin secretion. NADH content increased only after initiation of insulin secretion and NADPH levels remained unchanged during the early secretory response to high glucose. These data contradict the hypothesis that insulin secretion is triggered by a more reduced cytosolic redox state and instead indicate that insulin secretion is initiated by other metabolic coupling factor(s) generated in beta cells stimulated by high glucose.  相似文献   
992.
Xaa‐Pro peptidases (XPP) are dinuclear peptidases of MEROPS M24B family that hydrolyze Xaa‐Pro iminopeptide bond with a trans‐proline at the second position of the peptide substrate. XPPs specific towards dipeptides are called prolidases while those that prefer longer oligopeptides are called aminopeptidases P. Though XPPs are strictly conserved in bacterial and archaeal species, the structural and sequence features that distinguish between prolidases and aminopeptidases P are not always clear. Here, we report 1.4 Å resolution crystal structure of a novel XPP from Deinococcus radiodurans (XPPdr). XPPdr forms a novel dimeric structure via unique dimer stabilization loops of N‐terminal domains such that their C‐terminal domains are placed far apart from each other. This novel dimerization is also the consequence of a different orientation of N‐terminal domain in XPPdr monomer than those in other known prolidases. The enzymatic assays show that it is a prolidase with broad substrate specificity. Our structural, mutational, and molecular dynamics simulation analyses show that the conserved Arg46 of N‐terminal domain is important for the dipeptide selectivity. Our BLAST search found XPPdr orthologs with conserved sequence motifs which correspond to unique structural features of XPPdr, thus identify a new subfamily of bacterial prolidases.  相似文献   
993.
The onset of type 1 diabetes can occur at any age, with as many as half of all cases diagnosed after age 15. Despite this wide distribution in age at diagnosis, most genetic studies focus on cases diagnosed in childhood or during early adulthood. To better understand the genetics of late-onset type 1 diabetes, we collected a Finnish case/control cohort with all cases diagnosed between ages 15 and 40. We genotyped 591 probands and 1,538 control subjects at regions well established as susceptibility loci in early onset type 1 diabetes. These loci were then tested for disease association and age-at-diagnosis effects. Using logistic regression, we found that single-nucleotide polymorphisms (SNPs) at the INS, PTPN22, and IFIH1 loci were associated with late-onset disease (OR (95%CI)?=?0.57(0.47–0.69), p?=?2.77?×?10?9; OR (95%CI)?=?1.50 (1.27–1.78), p?=?3.98?×?10?6; and OR (95%CI)?=?0.81(0.71–0.93), p?=?0.0028, respectively). In contrast, a disease association was not detected for two SNPs at the IL2RA locus (rs11594656 and rs41295061). Despite this, we did find an independent age-at-diagnosis effect for each IL2RA SNP using a multivariate Cox proportional hazards model (p?=?0.003, 0.002, respectively). Taken together, polymorphisms at the IL2RA locus were a major determinant of age at diagnosis in our cohort with an effect at par with the HLA-DQ2/DQ8 genotype as measured by hazard ratios. These findings suggest that the IL2RA locus controls both the susceptibility to disease and its time of occurrence. Thus, we believe the IL2/IL2R axis represents a potential therapeutic target for delaying the onset of disease.  相似文献   
994.
R Gilbert  K Ghosh  L Rasile    H P Ghosh 《Journal of virology》1994,68(4):2272-2285
We have used the glycoprotein gB of herpes simplex virus type 1 (gB-1), which buds from the inner nuclear membrane, as a model protein to study localization of membrane proteins in the nuclear envelope. To determine whether specific domains of gB-1 glycoprotein are involved in localization in the nuclear envelope, we have used deletion mutants of gB-1 protein as well as chimeric proteins constructed by replacing the domains of the cell surface glycoprotein G of vesicular stomatitis virus with the corresponding domains of gB. Mutant and chimeric proteins expressed in COS cells were localized by immunoelectron microscopy. A chimeric protein (gB-G) containing the ectodomain of gB and the transmembrane and cytoplasmic domains of G did not localize in the nuclear envelope. When the ectodomain of G was fused to the transmembrane and cytoplasmic domains of gB, however, the resulting chimeric protein (G-gB) was localized in the nuclear envelope. Substitution of the transmembrane domain of G with the 69 hydrophobic amino acids containing the membrane anchoring domain of gB allowed the hybrid protein (G-tmgB) to be localized in the nuclear envelope, suggesting that residues 721 to 795 of gB can promote retention of proteins in the nuclear envelope. Deletion mutations in the hydrophobic region further showed that a transmembrane segment of 21 hydrophobic amino acids, residues 774 to 795 of gB, was sufficient for localization in the nuclear envelope. Since wild-type gB and the mutant and chimeric proteins that were localized in the nuclear envelope were also retained in the endoplasmic reticulum, the membrane spanning segment of gB could also influence retention in the endoplasmic reticulum.  相似文献   
995.
996.
In addition to their well-documented roles in the promotion of nonsense-mediated mRNA decay (NMD), yeast Upf proteins (Upf1, Upf2/Nmd2, and Upf3) also manifest translational regulatory functions, at least in vitro, including roles in premature translation termination and subsequent reinitiation. Here, we find that all upfΔ strains also fail to reinitiate translation after encountering a premature termination codon (PTC) in vivo, a result that led us to seek a unifying mechanism for all of these translation phenomena. Comparisons of the in vitro translational activities of wild-type (WT) and upf1Δ extracts were utilized to test for a Upf1 role in post-termination ribosome reutilization. Relative to WT extracts, non-nucleased extracts lacking Upf1 had approximately twofold decreased activity for the translation of synthetic CAN1/LUC mRNA, a defect paralleled by fewer ribosomes per mRNA and reduced efficiency of the 60S joining step at initiation. These deficiencies could be complemented by purified FLAG-Upf1, or 60S subunits, and appeared to reflect diminished cycling of ribosomes from endogenous PTC-containing mRNAs to exogenously added synthetic mRNA in the same extracts. This hypothesis was tested, and supported, by experiments in which nucleased WT or upf1Δ extracts were first challenged with high concentrations of synthetic mRNAs that were templates for either normal or premature translation termination and then assayed for their capacity to translate a normal mRNA. Our results indicate that Upf1 plays a key role in a mechanism coupling termination and ribosome release at a PTC to subsequent ribosome reutilization for another round of translation initiation.  相似文献   
997.
Phosphorylation at the C-terminal flexible region of the C-Raf protein plays an important role in regulating its biological activity. Auto-phosphorylation at serine 621 (S621) in this region maintains C-Raf stability and activity. This phosphorylation mediates the interaction between C-Raf and scaffold protein 14-3-3ζ to activate the downstream MEK kinase pathway. In this study, we have defined the interaction of C-terminal peptide sequence of C-Raf with 14-3-3ζ protein and determined the possible structural adaptation of this region. Biophysical elucidation of the interaction was carried out using phosphopeptide (residue number 615–630) in the presence of 14-3-3ζ protein. Using isothermal titration calorimetry (ITC), a high binding affinity with micro-molar range was found to exist between the peptide and 14-3-3ζ protein, whereas the non-phosphorylated peptide did not show any appreciable binding affinity. Further interaction details were investigated using several biophysical techniques such as circular dichroism (CD), fluorescence, and nuclear magnetic resonance (NMR) spectroscopy, in addition to molecular modeling. This study provides the molecular basis for C-Raf C-terminal-derived phosphopeptide interaction with 14-3-3ζ protein as well as structural insights responsible for phosphorylated S621-mediated 14-3-3ζ binding at an atomic resolution.  相似文献   
998.
Common beta-lactamases inhibit bacterial biofilm formation   总被引:1,自引:0,他引:1  
Beta-lactamases, which evolved from bacterial penicillin-binding proteins (PBPs) involved in peptidoglycan (PG) synthesis, confer resistance to beta-lactam antibiotics. While investigating the genetic basis of biofilm development by Pseudomonas aeruginosa, we noted that plasmid vectors encoding the common beta-lactamase marker TEM-1 caused defects in twitching motility (mediated by type IV pili), adherence and biofilm formation without affecting growth rates. Similarly, strains of Escherichia coli carrying TEM-1-encoding vectors grew normally but showed reduced adherence and biofilm formation, showing this effect was not species-specific. Introduction of otherwise identical plasmid vectors carrying tetracycline or gentamicin resistance markers had no effect on biofilm formation or twitching motility. The effect is restricted to class A and D enzymes, because expression of the class D Oxa-3 beta-lactamase, but not class B or C beta-lactamases, impaired biofilm formation by E. coli and P. aeruginosa. Site-directed mutagenesis of the catalytic Ser of TEM-1, but not Oxa-3, abolished the biofilm defect, while disruption of either TEM-1 or Oxa-3 expression restored wild-type levels of biofilm formation. We hypothesized that the A and D classes of beta-lactamases, which are related to low molecular weight (LMW) PBPs, may sequester or alter the PG substrates of such enzymes and interfere with normal cell wall turnover. In support of this hypothesis, deletion of the E. coli LMW PBPs 4, 5 and 7 or combinations thereof, resulted in cumulative defects in biofilm formation, similar to those seen in beta-lactamase-expressing transformants. Our results imply that horizontal acquisition of beta-lactamase resistance enzymes can have a phenotypic cost to bacteria by reducing their ability to form biofilms. Beta-lactamases likely affect PG remodelling, manifesting as perturbation of structures involved in bacterial adhesion that are required to initiate biofilm formation.  相似文献   
999.
1000.
Besides activating NFκB by phosphorylating IκBs, IKKα/IKKβ kinases are also involved in regulating metabolic insulin signaling, the mTOR pathway, Wnt signaling, and autophagy. How IKKβ enzymatic activity is targeted to stimulus-specific substrates has remained unclear. We show here that NEMO, known to be essential for IKKβ activation by inflammatory stimuli, is also a specificity factor that directs IKKβ activity toward IκBα. Physical interaction and functional competition studies with mutant NEMO and IκB proteins indicate that NEMO functions as a scaffold to recruit IκBα to IKKβ. Interestingly, expression of NEMO mutants that allow for IKKβ activation by the cytokine IL-1, but fail to recruit IκBs, results in hyperphosphorylation of alternative IKKβ substrates. Furthermore IKK's function in autophagy, which is independent of NFκB, is significantly enhanced without NEMO as IκB scaffold. Our work establishes a role for scaffolds such as NEMO in determining stimulus-specific signal transduction via the pleiotropic signaling hub IKK.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号