首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   973篇
  免费   56篇
  2023年   5篇
  2022年   14篇
  2021年   28篇
  2020年   19篇
  2019年   20篇
  2018年   13篇
  2017年   31篇
  2016年   24篇
  2015年   30篇
  2014年   40篇
  2013年   54篇
  2012年   71篇
  2011年   73篇
  2010年   46篇
  2009年   36篇
  2008年   50篇
  2007年   39篇
  2006年   49篇
  2005年   42篇
  2004年   32篇
  2003年   29篇
  2002年   36篇
  2001年   25篇
  2000年   23篇
  1999年   16篇
  1998年   3篇
  1997年   3篇
  1995年   8篇
  1994年   3篇
  1992年   4篇
  1991年   7篇
  1990年   7篇
  1989年   9篇
  1988年   5篇
  1987年   8篇
  1986年   7篇
  1985年   13篇
  1984年   12篇
  1983年   9篇
  1982年   12篇
  1980年   4篇
  1979年   13篇
  1978年   7篇
  1977年   5篇
  1974年   4篇
  1973年   4篇
  1972年   6篇
  1970年   3篇
  1968年   4篇
  1963年   2篇
排序方式: 共有1029条查询结果,搜索用时 359 毫秒
101.
Lipoprotein lipase (LPL) of gilthead sea bream (Sparus aurata) was cloned and sequenced using a RT-PCR approach completed by 3' and 5'RACE assays. The nucleotide sequence covered 1669 bp with an open reading frame of 525 amino acids, including a putative signal peptide of 23 amino acids long. Sequence alignment and phylogenetic analysis revealed a high degree of conservation among most fish and higher vertebrates, retaining the consensus sequence the polypeptide "lid", the catalytic triad and eight cysteine residues at the N-terminal region. A tissue-specific regulation of LPL was also found on the basis of changes in season and nutritional condition as a result of different dietary protein sources. First, the expression of LPL in mesenteric adipose tissue was several times higher than in liver and skeletal muscle. Secondly, the spring up-regulation of LPL expression in the mesenteric adipose tissue was coincident with a pronounced increase of whole body fat content. Thirdly, the highest expression of LPL in the skeletal muscle was found in summer, which may serve to cover the increased energy demands for muscle growth and protein accretion. Further, in fish fed plant-protein-based diets, hepatic LPL expression was up-regulated whereas an opposite trend was found in the mesenteric adipose tissue, which may contribute to drive dietary lipids towards liver fat storage. Finally, it is of interest that changes in circulating triglyceride (TG) levels support the key role of LPL in the clearance of TG-rich lipoproteins. This study is the first report in fish of a co-regulated expression of LPL in oxidative and fat storage tissues under different physiological conditions.  相似文献   
102.
The purposes of this study were to determine the separate and interactive functions of progesterone and estradiol in regulating the cervical prostaglandin (PG) system in pregnant sheep at 0.7 gestations. At 106-108 days of gestational age (dGA), ewes were treated with vehicle for 14 days (n = 5) or vehicle for 12 days followed by estradiol 5 mg twice a day, intramuscularly for 2 days (n = 5) or progesterone 100 mg, twice a day, intramuscularly for 14 days (n = 5) or progesterone 100 mg twice a day, intramuscularly for 10 days and then 2 days vehicle followed by estradiol 5 mg twice a day intramuscularly for 2 days (n = 5). At 121-123 dGA, cervical tissues were obtained under halothane anesthesia. Cervical RNA and protein were extracted and analyzed for prostaglandin-endoperoxide synthase 2 (COX2), two PGE(2) receptors, PTGER2 and PTGER4, and estrogen receptor alpha (ESR1) by Northern and Western blot analysis. Immunocytochemistry and in situ hybridization were applied to localize cellular distribution of COX2, PTGER2, and PTGER4 in the cervix. Data were analyzed by ANOVA. COX2 and PTGER4 mRNAs and proteins were increased (P < 0.05) in ewes treated with combined estradiol and progesterone but not in ewes treated with estradiol or progesterone alone compared with controls. ESR1 mRNA was increased in ewes treated with progesterone and estradiol plus progesterone. In contrast, PTGER2 mRNA and protein remained the same after all treatments. COX2 mRNA and protein were localized only in cervical glandular epithelial cells, whereas PTGER2 and PTGER4 were localized in both cervical glandular epithelial and smooth muscle cells. In conclusion, these data suggest that additional progesterone priming at 0.7 gestations synergizes with estradiol to induce cervical COX2, PTGER4, and ESR1 and support our hypothesis that stimulation of the cervical PG system by estradiol is optimized by sufficient progesterone priming in the pregnant sheep cervix.  相似文献   
103.
The role of methanolic extract and n-butanol fraction of A. macrophylla leaves was investigated on the forward motility of goat spermatozoa. The methanol extract (600 micro/g/ml) and one n-butanol fraction (Fraction A; 100 microg/ml) showed marked inhibition of sperm forward motility, tested by microscopic and spectrophotometric methods. Approximately, 50-60% of the spermatozoa lost their motility when treated with 600 microg/ml of methanol extract or 100 microg/ml of Fraction A. The Fraction A at 400 microg/ml concentration showed complete inhibition of sperm forward motility at 0 min. The inhibitory activity increased with the increasing concentrations of the fraction. The motility inhibitory activity of the Fraction A was stable to heat treatment at 100 degrees C for 2 min. The compound showed high inhibitory effect in the pH range 6.7-7.6. Fraction A also showed high efficacy for inhibiting human sperm motility, assessed by the microscopic method. The phytochemical analysis of methanolic extract of A. macrophylla leaves revealed the presence of sterols, triterpene, flavonoid, alkaloid, tannin and reducing sugar, while the Fraction A contains beta-sitosterol, a common phytosterol. The results demonstrate that Fraction A (beta-sitosterol) is a potent inhibitor of sperm motility and thus it has the potential to serve as a vaginal contraceptive.  相似文献   
104.
Dutta K  Shi H  Cruz-Chu ER  Kami K  Ghose R 《Biochemistry》2004,43(25):8094-8106
An analysis of the backbone dynamics of the C-terminal Src homology 3 (SH3) domain of p67(phox), p67(phox)SH3(C), in complex with a 32-residue high-affinity (K(d) = 24 nM) peptide, Pf, from the C-terminal region of p47(phox) is presented. This paper represents the first detailed analysis of the backbone dynamics and the ligand-induced changes therein of a high-affinity, high-specificity interaction involving an SH3 domain. The dynamic features are compared with those in the high-affinity, highly specific interaction between the SH3 domain of C-terminal Src kinase (Csk-SH3) and a proline-rich peptide from proline-enriched phosphatase (PEP). Both systems share common dynamic features especially in the canonical PxxP motif recognition surface where slow micro- to millisecond time scale dynamics persist on complex formation especially in several residues that are implicated in ligand recognition and in stabilizing the SH3 fold. These residues are highly conserved in SH3 domains. Ile505, which lies outside the PxxP recognition motif on p67(phox)SH3(C) and is key in conferring high specificity to the p67(phox)SH3(C)/Pf interaction, becomes more disordered upon complex formation. This behavior is similar to that seen in the residues that constitute the specificity surface in Csk-SH3.  相似文献   
105.
Massey AC  Kaushik S  Cuervo AM 《Autophagy》2006,2(4):325-327
The original idea that each protein follows a particular proteolytic pathway for its degradation is no longer supported. Instead, different proteolytic systems can simultaneously contribute to the degradation of a particular protein, or they can alternate in this task depending, for the most part, on the cellular conditions. It is thus reasonable to expect that some level of communication exists among different proteolytic systems to orchestrate these coordinated activities. Direct cross-talk between two forms of autophagy, macroautophagy and chaperone-mediated autophagy (CMA) has been recently demonstrated. Cells respond to blockage of CMA by upregulating macroautophagy. Although macroautophagy cannot completely substitute for the lack of CMA, the partial redundancy between both pathways allows some level of compensation, enough to maintain protein degradation and preserve cell homeostasis. Understanding the cross-talk among different autophagic pathways and with other proteolytic systems is important to predict the type of compensatory mechanisms that could be elicited in response to failure of one of these systems, and to understand the consequences that manipulating one of these pathways for therapeutic purposes could have on the activity of the other pathways.  相似文献   
106.
We describe an in-cell NMR-based method for mapping the structural interactions (STINT-NMR) that underlie protein-protein complex formation. This method entails sequentially expressing two (or more) proteins within a single bacterial cell in a time-controlled manner and monitoring their interactions using in-cell NMR spectroscopy. The resulting NMR data provide a complete titration of the interaction and define structural details of the interacting surfaces at atomic resolution. Unlike the case where interacting proteins are simultaneously overexpressed in the labeled medium, in STINT-NMR the spectral complexity is minimized because only the target protein is labeled with NMR-active nuclei, which leaves the interactor protein(s) cryptic. This method can be combined with genetic and molecular screens to provide a structural foundation for proteomic studies. The protocol takes 4 d from the initial transformation of the bacterial cells to the acquisition of the NMR spectra.  相似文献   
107.
Acquisition of food in many animal species depends on the pursuit and capture of moving prey. Among modern humans, the pursuit and interception of moving targets plays a central role in a variety of sports, such as tennis, football, Frisbee, and baseball. Studies of target pursuit in animals, ranging from dragonflies to fish and dogs to humans, have suggested that they all use a constant bearing (CB) strategy to pursue prey or other moving targets. CB is best known as the interception strategy employed by baseball outfielders to catch ballistic fly balls. CB is a time-optimal solution to catch targets moving along a straight line, or in a predictable fashion--such as a ballistic baseball, or a piece of food sinking in water. Many animals, however, have to capture prey that may make evasive and unpredictable maneuvers. Is CB an optimum solution to pursuing erratically moving targets? Do animals faced with such erratic prey also use CB? In this paper, we address these questions by studying prey capture in an insectivorous echolocating bat. Echolocating bats rely on sonar to pursue and capture flying insects. The bat's prey may emerge from foliage for a brief time, fly in erratic three-dimensional paths before returning to cover. Bats typically take less than one second to detect, localize and capture such insects. We used high speed stereo infra-red videography to study the three dimensional flight paths of the big brown bat, Eptesicus fuscus, as it chased erratically moving insects in a dark laboratory flight room. We quantified the bat's complex pursuit trajectories using a simple delay differential equation. Our analysis of the pursuit trajectories suggests that bats use a constant absolute target direction strategy during pursuit. We show mathematically that, unlike CB, this approach minimizes the time it takes for a pursuer to intercept an unpredictably moving target. Interestingly, the bat's behavior is similar to the interception strategy implemented in some guided missiles. We suggest that the time-optimal strategy adopted by the bat is in response to the evolutionary pressures of having to capture erratic and fast moving insects.  相似文献   
108.
DNA ligases are essential guardians of genome integrity by virtue of their ability to recognize and seal 3′-OH/5′-phosphate nicks in duplex DNA. The substrate binding and three chemical steps of the ligation pathway are coupled to global and local changes in ligase structure, involving both massive protein domain movements and subtle remodeling of atomic contacts in the active site. Here we applied solution NMR spectroscopy to study the conformational dynamics of the Chlorella virus DNA ligase (ChVLig), a minimized eukaryal ATP-dependent ligase consisting of nucleotidyltransferase, OB, and latch domains. Our analysis of backbone 15N spin relaxation and 15N,1H residual dipolar couplings of the covalent ChVLig-AMP intermediate revealed conformational sampling on fast (picosecond to nanosecond) and slow timescales (microsecond to millisecond), indicative of interdomain and intradomain flexibility. We identified local and global changes in ChVLig-AMP structure and dynamics induced by phosphate. In particular, the chemical shift perturbations elicited by phosphate were clustered in the peptide motifs that comprise the active site. We hypothesize that phosphate anion mimics some of the conformational transitions that occur when ligase-adenylate interacts with the nick 5′-phosphate.  相似文献   
109.
110.
The paraventricular nucleus (PVN) of the hypothalamus is a central site known to modulate sympathetic outflow. Excitatory and inhibitory neurotransmitters within the PVN dictate final outflow. The goal of the present study was to examine the role of the interaction between the excitatory neurotransmitter glutamate and the inhibitory neurotransmitter GABA in the regulation of sympathetic activity. In alpha-chloralose- and urethane-anesthetized rats, microinjection of glutamate and N-methyl-D-aspartate (NMDA; 50, 100, and 200 pmol) into the PVN produced dose-dependent increases in renal sympathetic nerve activity, blood pressure, and heart rate. These responses were blocked by the NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid (AP-5). Microinjection of bicuculline, a GABA(A) receptor antagonist, into the PVN (50, 100, and 200 pmol) also produced significant, dose-dependent increases in renal sympathetic nerve activity, blood pressure, and heart rate; AP-5 also blocked these responses. Using microdialysis and HPLC/electrochemical detection techniques, we observed that bicuculline infusion into the PVN increased glutamate release. Using an in vitro hypothalamic slice preparation, we found that bicuculline increased the frequency of glutamate-mediated excitatory postsynaptic currents in PVN-rostral ventrolateral medullary projecting neurons, supporting a GABA(A)-mediated tonic inhibition of this excitatory input into these neurons. Together, these data indicate that 1) glutamate, via NMDA receptors, excites the presympathetic neurons within the PVN and increases sympathetic outflow and 2) this glutamate excitatory input is tonically inhibited by a GABA(A)-mediated mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号