首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   490篇
  免费   36篇
  526篇
  2023年   6篇
  2022年   9篇
  2021年   14篇
  2020年   34篇
  2019年   55篇
  2018年   26篇
  2017年   20篇
  2016年   20篇
  2015年   17篇
  2014年   32篇
  2013年   41篇
  2012年   44篇
  2011年   33篇
  2010年   18篇
  2009年   18篇
  2008年   29篇
  2007年   19篇
  2006年   19篇
  2005年   25篇
  2004年   12篇
  2003年   10篇
  2002年   6篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有526条查询结果,搜索用时 0 毫秒
11.
The extracellular matrix of different mammalian tissues is commonly used as scaffolds in the field of tissue engineering. One of these tissues, which has frequently been studied due to its structural and biological features, is the small intestine submucosal membrane. These research are mainly done on the porcine small intestine. However, a report has recently been published about a scaffold produced from the submucosal layer of the ovine small intestine. In the present study, ovine small intestine submucosal (OSIS) was decellularized in a modified manner and its histological, morphological, and biomechanical properties were studied. Decellularization was performed in two phases: physical and chemical. In this method, a chloroform-methanol mixture, enzymatic digestion, and a constant dose of sodium dodecyl sulfate (SDS) was used in the least agitation time and its histological property and biocompatibility were evaluated in the presence of adipose tissue-derived stem cells (ADSCs); furthermore, ADSCs were isolated with a simple method (modified physical washing non-enzymatic isolation). The results were showed that the use of OSIS could be effective and operative. Mechanical properties, histological structure and shape, and glycosaminoglycan content were preserved. In the SDS-treated group, more than 90% of the native cells of tissue were deleted, and also in this group, no toxicity was observed and cell proliferation was supported, compared to the untreated group. Therefore, our results indicate that ADSCs seeded on OSIS scaffold could be used as a new approach in regenerative medicine as hybrid or hydrogel application.  相似文献   
12.
13.
Environmental pollution is one of the risk factors for respiratory diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2) is the major mechanisms contributing to cellular defense against oxidative damage. Gallic acid (GA) is regarded as potent anti-inflammatory and antioxidant agents. The aim was to evaluate the role of Nrf2 pathway in particulate matter (PM10) exposure on lung and epithelial cells with an emphasis on the role of GA. In in vivo part, the rats were divided as control, GA (30?mg/kg), particulate matter (PM) (0.5, 2.5, and 5?mg/kg), and PM?+?GA. In in vitro study, the cells were divided as control, PM10 (100, 250, and 500?µg/ml), GA (50 µmol/L) and PM10+GA. Inflammation, oxidative stress and Nrf2-pathway factors were assessed. PM10 groups showed a considerable increase in the epithelial permeability and inflammatory parameters. We also found a significant decrease in the expression of Nrf2 and its up-stream regulators genes. Accordingly, the biosynthesis of glutathione (GSH) and other antioxidant activities significantly decreased. Gallic acid was identified to restore the antioxidant status to the normal levels. Our findings approved that Nrf2 is involved in PM10-induced oxidative damages and showed that Nrf2 activation by natural agents could ameliorate respiratory injuries induced by PM10.  相似文献   
14.
Probiotics and Antimicrobial Proteins - Data on the effects of probiotics on adipokines such as omentin-1, nesfatin-1, and adropin are limited. The aim of this study was to evaluate the effects of...  相似文献   
15.
16.
A new, sensitive and simple high-performance liquid chromatographic method for analysis of topiramate, an antiepileptic agent, using 4-chloro-7-nitrobenzofurazan as pre-column derivatization agent is described. Following liquid-liquid extraction of topiramate and an internal standard (amlodipine) from human serum, derivatization of the drugs was performed by the labeling agent in the presence of dichloromethane, methanol, acetonitrile and borate buffer (0.05 M; pH 10.6). A mixture of sodium phosphate buffer (0.05 M; pH 2.4): methanol (35:65 v/v) was eluted as mobile phase and chromatographic separation was achieved using a Shimpack CLC-C18 (150 x 4.6 mm) column. In this method the limit of quantification of 0.01 microg/mL was obtained and the procedure was validated over the concentration range of 0.01 to 12.8 microg/mL. No interferences were found from commonly co-administrated antiepileptic drugs including phenytoin, phenobarbital carbamazepine, lamotrigine, zonisamide, primidone, gabapentin, vigabatrin, and ethosuximide. The analysis performance was carried-out in terms of specificity, sensitivity, linearity, precision, accuracy and stability and the method was shown to be accurate, with intra-day and inter-day accuracy from -3.4 to 10% and precise, with intra-day and inter-day precision from 1.1 to 18%.  相似文献   
17.
Non-thermal technologies can maintain fruit and vegetable products quality better than traditional thermal processing. Pulsed light (PL) is a non-thermal method for microbial inactivation (vegetative cells and spores) in fruits and vegetables. The PL treatment involves the application of intense and short-duration pulses of broad spectrum wavelengths ranging from UV to near-infrared (100–1100 nm). This review summarized application of PL technology to control microbial contamination and increasing shelf-life of some fruits and vegetables including apple, blueberries, grape, orange, strawberries, carrot, lettuce, spinach, and tomato. The microbial inactivation in very short treatment times, low energy used by this system, flexibility for solid or liquid samples, few residual compounds and no synthetic chemicals that cause environmental pollution or harm humans, is benefits of PL technique. The efficiency of PL disinfection is closely associated with the input voltage, fluence (energy dose), composition of the emitted light spectrum, number of lamps, the distance between samples and light source, and frequency and number of applied pulses. The PL treatments control pathogenic and spoilage microorganisms, so it facilitates the growth and development of the starter microorganisms affecting product quality.  相似文献   
18.
miR-224 is associated with polycystic ovary syndrome (PCOS) that is an epidemic in reproductive age women. Most studies of miR-224 have focused on in vitro analyses, whereas the in vivo effects are not widely understood. In this study, we have conducted in silico analysis and found two potential miR-224 target genes, Ptx3 and Smad4 that have roles in folliculogenesis. Because patients with PCOS have decreased numbers of follicular cells related to cell apoptosis, we also investigated two apoptotic genes, Bax and Bcl2. We used the intraovarian injection method to deliver miR-224 into a mouse model. Histological examination of the ovaries was done by fluorescent microscope. Fertilization, cleavage, and developmental competence rates were counted under a stereomicroscope and compared between the studied groups. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of miR-224 was conducted to determine the levels of the studied genes in the oocytes, cumulus cells, and blastocysts. The numbers of oocytes and fertilization rate indicated a higher apoptosis index ( p < 0.05) and increased numbers of degenerated embryos with irregular blastomeres and fragmented cytoplasm in the experimental group. RT-PCR results indicated a significant increase in miR-224 levels in the manipulated group. Of the four analyzed genes, Ptx3, Smad4, and Bcl2 had decreased levels in the transfected group, with increased Bax expression ( p < 0.05). This data showed that miR-224 negatively affected ovulation in the mouse model by decreasing Ptx3 and Smad4 expressions. The changes in Bcl2 and Bax expression levels, as apoptosis biomarkers, showed that apoptosis was a secondary outcome of the effect of miR-224.  相似文献   
19.
Cancer incidences are growing and cause millions of deaths worldwide. Cancer therapy is one of the most important challenges in medicine. Improving therapeutic outcomes from cancer therapy is necessary for increasing patients’ survival and quality of life. Adjuvant therapy using various types of antibodies or immunomodulatory agents has suggested modulating tumor response. Resistance to apoptosis is the main reason for radioresistance and chemoresistance of most of the cancers, and also one of the pivotal targets for improving cancer therapy is the modulation of apoptosis signaling pathways. Apoptosis can be induced by intrinsic or extrinsic pathways via stimulation of several targets, such as membrane receptors of tumor necrosis factor-α and transforming growth factor-β, and also mitochondria. Curcumin is a naturally derived agent that induces apoptosis in a variety of different tumor cell lines. Curcumin also activates redox reactions within cells inducing reactive oxygen species (ROS) production that leads to the upregulation of apoptosis receptors on the tumor cell membrane. Curcumin can also upregulate the expression and activity of p53 that inhibits tumor cell proliferation and increases apoptosis. Furthermore, curcumin has a potent inhibitory effect on the activity of NF-κB and COX-2, which are involved in the overexpression of antiapoptosis genes such as Bcl-2. It can also attenuate the regulation of antiapoptosis PI3K signaling and increase the expression of MAPKs to induce endogenous production of ROS. In this paper, we aimed to review the molecular mechanisms of curcumin-induced apoptosis in cancer cells. This action of curcumin could be applicable for use as an adjuvant in combination with other modalities of cancer therapy including radiotherapy and chemotherapy.  相似文献   
20.
Tumor microenvironment (TME) is a host for a complex network of heterogeneous stromal cells with overlapping or opposing functions depending on the dominant signals within this milieu. Reciprocal paracrine interactions between cancer cells with cells within the tumor stroma often reshape the TME in favor of the promotion of tumor. These complex interactions require more sophisticated approaches for cancer therapy, and, therefore, advancing knowledge about dominant drivers of cancer within the TME is critical for designing therapeutic schemes. This review will provide knowledge about TME architecture, multiple signaling, and cross communications between cells within this milieu, and its targeting for immunotherapy of cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号