首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   13篇
  2022年   2篇
  2019年   8篇
  2018年   6篇
  2017年   3篇
  2016年   7篇
  2015年   4篇
  2014年   7篇
  2013年   12篇
  2012年   13篇
  2011年   8篇
  2010年   4篇
  2009年   4篇
  2008年   7篇
  2007年   7篇
  2006年   9篇
  2005年   8篇
  2004年   6篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  1999年   5篇
  1998年   1篇
  1995年   1篇
  1987年   2篇
  1981年   1篇
排序方式: 共有133条查询结果,搜索用时 31 毫秒
121.
The main by-product generated by the Spanish olive oil industry, a wet solid lignocellulosic material called "alperujo" (AL), was evaluated as a composting substrate by using different aeration strategies and bulking agents. The experiments showed that composting performance was mainly influenced by the type of bulking agent added, and by the number of mechanical turnings. The bulking agents tested in this study were cotton waste, grape stalk, a fresh cow bedding and olive leaf; the latter showed the worse performance. Forced ventilation alone was revealed to work inadequately in most of the experiments. The composting process involved a substantial degradation of the organic substrate with average losses of 48.4, 28.6, 53.7 and 57.0% for total organic matter, lignin, cellulose and hemicellulose, respectively. Both organic matter biodegradation and humification were greatly influenced by the lignocellulosic nature of the starting material, which led to low organic matter and nitrogen loss rates and a progressive increase in more humified substances, as revealed by the end-values of the humification indices. The resulting composts were of good quality in terms of nutrient content, stabilised and non-phytotoxic organic matter and low heavy metal content. This demonstrates that composting technology can be used as an alternative treatment method to turn AL into compost that can be used as organic amendments or fertilisers for agricultural systems.  相似文献   
122.
Surfactin and fengycin are lipopeptide biosurfactants produced by Bacillus subtilis. This work describes for the first time the use of bubbleless bioreactors for the production of these lipopeptides by B. subtilis ATCC 21332 with aeration by a hollow fiber membrane air–liquid contactor to prevent foam formation. Three different configurations were tested: external aeration module made from either polyethersulfone (reactor BB1) or polypropylene (reactor BB2) and a submerged module in polypropylene (reactor BB3). Bacterial growth, glucose consumption, lipopeptide production, and oxygen uptake rate were monitored during the culture in the bioreactors. For all the tested membranes, the bioreactors were of satisfactory bacterial growth and lipopeptide production. In the three configurations, surfactin production related to the culture volume was in the same range: 242, 230, and 188 mg l−1 for BB1, BB2, and BB3, respectively. Interestingly, high differences were observed for fengycin production: 47 mg l−1 for BB1, 207 mg l−1 for BB2, and 393 mg l−1 for BB3. A significant proportion of surfactin was adsorbed on the membranes and reduced the volumetric oxygen mass transfer coefficient. The degree of adsorption depended on both the material and the structure of the membrane and was higher with the submerged polypropylene membrane.  相似文献   
123.
Adiponectin (ApN) is an adipokine whose expression and plasma levels are inversely related to obesity and insulin-resistant states. The in vivo effects of a chronic expression of exogenous ApN restricted to adipose tissue are unclear. Moreover, the regulatory effects of ApN on its own expression and on that of its receptors are still unknown. In this study, we generated transgenic (Tg) mice with moderate expression of exogenous ApN targeted to adipose tissue (native full-length ApN being placed under control of the adipocyte promoter aP2). After a transient overexpression of ApN in young pups, we intriguingly observed a reduction of ApN mRNA levels and protein content in fat depots, together with a decrease of circulating ApN in adult mice. As a result, the phenotype of these adult mice included glucose intolerance, insulin resistance, and increased adiposity. Reduced expression of ApN in fat tissue was associated with diminished expression of uncoupling protein 2 involved in energy dissipation, and higher expression of fatty acid synthase, a key enzyme of lipogenesis, and of TNFalpha implicated in insulin resistance. Concomitantly, the expression of the ApN receptor AdipoR2 that mediates action of full-length ApN was downregulated, while that of AdipoR1 was unaffected. In agreement with the in vivo studies, recombinant ApN added to the culture medium of 3T3-F442A adipocytes caused a decrease in AdipoR2 and ApN mRNA levels. This treatment did not affect the expression of AdipoR1. Eventually, we demonstrated a contrario that AdipoR2 (but not R1) was specifically upregulated in fat of ApN(-/-) mice. Our in vivo and in vitro data provide evidence for a novel regulatory feedback loop by which ApN downregulates its own production and the expression of its AdipoR2 receptor.  相似文献   
124.
125.
126.
FT-IR spectrometry and X-ray diffraction were applied to probe the differences between pulp fibers from Eucalyptus wood (hardwood) and Norway spruce wood (softwood). Wood processing was found to induce certain structural alterations within its components depending on the type of wood and the applied procedure. These differences were established by using techniques such as; spectral comparison of wood samples with those of individual component fractions, derivative spectroscopy, bands deconvolution, etc. FT-IR spectroscopy was shown to be an important tool that provided details about the structural characteristics of hardwood and softwood samples. Using second-derivative spectra and deconvolution processes small differences between spectra became apparent that allowed correlations to be made related to wood composition. In addition a correlation was established between the integral absorptions for the various bands and lignin content as well as the lignin/carbohydrate content. Relations between various spectral characteristics and the degree of crystallinity and sample composition were established.  相似文献   
127.
128.
The aim of this work was to investigate the cytotoxic effect of the essential oil of dried leaves of Lippia citriodora (H.B. & K.) harvested in different regions of Morocco. This effect was evaluated against the P815 murine mastocytoma cell line using the MTT assay. Interestingly, this work demonstrated for the first time that these essential oils exhibited a strong cytotoxic activity against the P815 cell line, with IC50 values ranging from 7.75 to 13.25 μg/ml. This cytotoxicity began early and increased in a dose‐ and time‐dependent manner. The chemical profile of these essential oils was analyzed by gas chromatography coupled to mass spectrometry. Importantly, the difference in terms of major components’ contents was not significant suggesting probably that the differential cytotoxicity between these essential oils could be attributed to the difference in the content of these essential oils in minor compounds, which could interact with each other or with the main molecules. Finally, this study demonstrated for the first time that essential oils of L. citriodora from different regions in Morocco induced apoptosis against P815 tumor cell line.  相似文献   
129.

This experiment was carried out in pots in a greenhouse to evaluate the effects of arbuscular mycorrhizal fungi (Funneliformis mosseae, Rhizophagus intraradices and Rhizophagus fasciculatus) on carob plant performance under different levels of phosphate fertilization. Non-mycorrhizal (NMyc) and mycorrhizal (Myc) carob plants were subjected to three levels of phosphate fertilization, L1 (0 mg P kg−1 soil), L2 (25 mg P kg−1 soil) and L3 (100 mg P kg−1 soil). Results showed that under L1 and L2 P-fertilization levels, arbuscular mycorrhizal symbiosis significantly improved growth and biomass production of carob plants. Moreover, mineral nutrient (P, K, Na and Ca) acquisition, photosynthetic activity (Fv/Fm), stomatal conductance, total chlorophyll content, and soluble sugar accumulation were also strongly improved in Myc plants in comparison with NMyc ones. Under L1 P-fertilization level, Myc plants showed strongly increased acid phosphatase activity in roots and in the rhizospheric soil than NMyc plants. Furthermore, Myc plants maintained high membrane integrity (over 80%) and low hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents, associated with increased activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (G-POD), and catalase (CAT) compared to NMyc plants. However, high phosphorus input (L3) negatively affected root colonization and mycorrhizal plant performance. Thus, carob plants associated with Funneliformis mosseae performed best under phosphorus deficiency and were the least sensitive to the variations of phosphorus input levels.

  相似文献   
130.
Protein sorting in epithelial cells is the major event that drive the onset and the maintenance of the functional cell polarity. A lot of interdependent steps are involved in protein sorting and targeting. Recent data describing the last results obtained in this field will be reviewed in the first part of this article. Molecular signals harbored by proteins to specify their destination are thought to be the driven force to sort given protein in a given pathway. The basolateral targeting signals so far identified are known for several years and are of the same nature, whereas apical targeting signals are still discussed and are of diverse molecular nature. Dipeptidyl peptidase IV (DPP IV/CD26) targeting signals have not been described so far and it will be interesting to study these signals, since the protein reach the apical membrane of epithelial cells through different pathways that strongly depend on the cell type considered. These different pathways result in DPP IV membrane localizations that may explain the multifunctional properties of DPP IV such as enzymatic digestion, interaction with extracellular matrix proteins, capture and transport of circulating proteins. We have undertaken the study of DPP IV molecular targeting signals and we will described here how the transmembrane domain and the glycosylation of the ectodomain may be involved in DPP IV apical targeting, with a special reference to the cell type specificity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号