首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   2篇
  2011年   4篇
  2010年   1篇
  2008年   3篇
  2007年   5篇
  2006年   1篇
  2005年   6篇
  2004年   7篇
  2003年   4篇
  2002年   3篇
  2001年   6篇
  2000年   5篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有75条查询结果,搜索用时 15 毫秒
51.
Apically expressed intestinal and renal sodium-hydrogen exchangers (NHEs) play a major role in Na(+) absorption. Our previous studies on NHE ontogeny have shown that NHE-2 and NHE-3 are expressed at very low levels in young animals. Furthermore, single and/or double NHE-2 and NHE-3 knockout mice display no obvious abnormalities before weaning. These observations suggest that other transporter(s) may be involved in intestinal Na+ absorption during early life. The present studies were designed to clone the novel rat intestinal NHE-8 cDNA and to decipher the NHE-8 protein localization and gene expression pattern during different developmental stages. The rat NHE-8 cDNA has 2,160 bp and encodes a 575-amino acid protein. An antibody against NHE-8 protein was developed. Immunohistochemistry staining indicated apical localization of NHE-8 protein in rat intestinal epithelial cells. The apical localization of NHE-8 was also confirmed by its presence in brush-border membrane and its absence in basolateral membrane preparations. Northern blotting utilizing a NHE-8-specific probe demonstrated higher NHE-8 mRNA expression in young animals compared with adult animals. Western blot analysis revealed a similar pattern. Tissue distribution with multiple human tissue RNA blot showed that NHE-8 was expressed in multiple tissues including the gastrointestinal tract. In conclusion, we have cloned the full-length NHE-8 cDNA from rat intestine and further showed its apical localization in intestinal epithelial cells. We have also shown that NHE-8 gene expression and protein expression were regulated during ontogeny. Our data suggests that NHE-8 may play an important role in intestinal Na+ absorption during early life.  相似文献   
52.
53.
Hypophosphatemic vitamin D-resistant rickets is the most common form of vitamin D-resistant rickets in man. The hypophosphatemic mouse model (Hyp) is phenotypically and biochemically similar to the human disease. Biochemically, hypophosphatemia is the hallmark of this disorder. The cause of the hypophosphatemia is thought to be secondary to a defect in the renal and/or intestinal Na(+)-phosphate transporter. The current studies were designed to investigate and characterize the localization of the defect in the Na(+)-phosphate transporter in this disorder. Phosphate uptake by renal brush border membrane vesicles (BBMV) showed a significant decrease in the slope of the initial rate of phosphate uptake in (Hyp) compared with control mice (0.009 versus 0.013, respectively). The slopes representing initial rates of phosphate uptake by jejunal BBMV were similar in (Hyp) and control mice (0.004 and 0.004, respectively). Kinetics of jejunal Na(+)-dependent phosphate uptake showed a Vmax of 0.63 +/- 0.12 and 0.64 +/- 0.12 nmol/mg protein/15 s in (Hyp) and control mice, respectively, whereas Km values were 0.12 +/- 0.08 and 0.2 +/- 0.11 mM, respectively. Similar kinetic analysis in the kidney showed a Vmax of 0.32 +/- 0.06 and 1.6 +/- 0.1 (p less than 0.01) and Km of 0.07 +/- 0.06 and 0.39 +/- 0.05 (p less than 0.02) in (Hyp) and control mice, respectively. Na(+)-dependent D-glucose uptake by BBMVs of intestine and kidney showed typical overshoot phenomena in (Hyp) and control mice. In order to explore these findings further, Na(+)-phosphate transporter expression from intestine and kidney was accomplished by microinjection of 50 ng of poly(A)+ RNA into Xenopus laevis oocytes. Na(+)-dependent phosphate uptake was expressed 6 days after the microinjection of intestinal and kidney poly(A)+ RNA from control mice. However, expression of the transporter from (Hyp) mice occurred only from the intestine, and not from the kidney. The decrease in the expression of the Na(+)-dependent phosphate transporter was not secondary to accelerated efflux of phosphate or decreased metabolism in oocytes injected with poly(A)+ RNA from (Hyp) mice.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
54.
55.
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. Packaging and storage of glutamate into glutamatergic neuronal vesicles requires ATP-dependent vesicular glutamate uptake systems, which utilize the electrochemical proton gradient as a driving force. VGLUT1, the first identified vesicular glutamate transporter, is only expressed in a subset of glutamatergic neurons. We report here the molecular cloning and functional characterization of a novel glutamate transporter, VGLUT2, from mouse brain. VGLUT2 has all major functional characteristics of a synaptic vesicle glutamate transporter, including ATP dependence, chloride stimulation, substrate specificity, and substrate affinity. It has 75 and 79% amino acid identity with human and rat VGLUT1, respectively. However, expression patterns of VGLUT2 in brain are different from that of VGLUT1. In addition, VGLUT2 activity is dependent on both membrane potential and pH gradient of the electrochemical proton gradient, whereas VGLUT1 is primarily dependent on only membrane potential. The presence of VGLUT2 in brain regions lacking VGLUT1 suggests that the two isoforms together play an important role in vesicular glutamate transport in glutamatergic neurons.  相似文献   
56.
57.
NHE3, the major intestinal Na(+)/H(+) exchanger, was shown to be downregulated and/or inhibited in patients with inflammatory bowel disease (IBD), a phenomenon believed to contribute to inflammation-associated diarrhea. NHE3(-/-) mice spontaneously develop colitis and demonstrate high susceptibility to dextran sulfate-induced mucosal injury. We investigated the effects of NHE3 deficiency on the development of chronic colitis in an IL-10 knockout (KO) mouse model of Crohn's disease. NHE3(-/-) mice were first backcrossed to 129/SvEv mice for >10 generations, with no apparent changes in their survival or phenotype. These mice were crossed with IL-10(-/-) mice on the same genetic background, and the phenotypes of 10-wk-old wild-type (WT), IL-10(-/-), NHE3(-/-), and IL-10(-/-)/NHE3(-/-) (double-KO) mice were studied. Histological and immunohistochemical examination of the colon established important architectural alterations, including increased neutrophilic and mononuclear cell infiltration in double- compared with single-KO mice. Double-KO mice demonstrated increased colonic expression of neutrophil collagenase matrix metalloproteinase-8 and the chemokines macrophage inflammatory protein-2, CXCL1, CXCL10, and CXCL11. Colonic IFNγ, IL-17, and IL-12/23 p40 protein secretion was significantly increased in double- compared with single-KO mice. IL-10(-/-)/NHE3(-/-) mouse colonic epithelium exhibited increased hallmarks of apoptosis, including a significantly increased number of cleaved caspase-3-positive surface epithelial cells. These results highlight the importance of NHE3 in the maintenance of intestinal barrier integrity and in modulating the inflammatory process in IL-10-deficient mice. Chronic NHE3 inhibition or underexpression observed in IBD may therefore contribute to the pathogenesis of IBD by influencing the extent of the epithelial barrier defect and affect the ultimate degree of inflammation.  相似文献   
58.
F K Ghishan  H L Greene 《Life sciences》1983,32(15):1735-1741
Zinc has been implicated to play a role in the pathogenesis and management of diabetes. Since the intestinal transport of several minerals as calcium, magnesium and strontium was found to be altered in the diabetic rats, we postulated that intestinal zinc transport may be also altered in the diabetic rat. Therefore, using invivo single pass perfusion technique we determined lumen to mucosa flux, net absorption and the mucosa to lumen flux of zinc in the small and large intestinal segments of diabetic rats, diabetic rats treated with insulin and in control rats. Tissue distribution of transported 65Zn into various organs and tissue concentrations of native zinc in the groups of rats studied were determined. Our results indicate that lumen to mucosa flux (μmole/h/g wet weight) was decreased in all intestinal segments of the diabetic rats compared to controls. However, the total capacity (mμmole/h/cm length) was similar. The specific activity and total capacity of net absorption of zinc was similar in all intestinal segments of the rats studied. The reverse mucosa to lumen flux was significantly decreased in all segments of diabetic rats compared to corresponding values in control rats. Tissue distribution of 65Zn following the perfusion study showed increased retention of 65Zn in the liver, kidney and femurs of the diabetic rats compared to controls. Serum and tissue concentration of native zinc in various organs were similar in all groups of rats studied. The mechanism(s) responsible for these findings are discussed.  相似文献   
59.
We investigated with an in vivo single pass perfusion technique, the effect of glucocorticoids on net magnesium and calcium absorption from the small and large intestine of suckling and adolescent rats. In control rats, rates of net magnesium and calcium absorption were several fold greater in both small and large intestinal segments of suckling rats compared to corresponding rates in segments of adolescent rats. Methylprednisolone 30 mg/kg body weight daily for three days, suppressed significantly net magnesium and calcium absorption from the small and large intestinal segments of suckling rats only. Methylprednisolone had no effect on either net magnesium or calcium absorption in adolescent rats. The mechanism(s) responsible for the observed decrease in net magnesium and calcium absorption in the suckling period by glucocorticoids are discussed.  相似文献   
60.
The present studies were designed to examine the regulation of Na+/H+ exchange activity by epidermal growth factor (EGF) in an in vitro system. Na+/H+ exchange activity was determined in brush-border membranes isolated from rat jejunal enterocytes incubated with epidermal growth factor and a number of second messengers. EGF at physiological concentrations stimulated Na+/H+ exchange activity without affecting vesicle size. The stimulation of Na+/H+ activity was the result of increasing Vmax of Na+/H+ (6.0 +/- 0.4 compared with 3.3 +/- 0.27 nmol/mg protein/5 sec, P < 0.01). Km values of the Na+/H+ exchanger in brush-border membrane from cells stimulated with EGF and controls were similar (16.0 +/- 3.0 vs 13.0 +/- 3.0, respectively). Na+/H+ activity was inhibited by phorbol esters, calmodulin, and cyclic AMP. The effects of EGF, calmodulin, cyclic AMP, and phorbol esters were dependent on ATP, because depleting the cells from ATP masked the effects on Na+/H+ exchange activity. The results suggest that EGF stimulates Na+/H+ exchange activity in the enterocytes. This stimulation is most likely not via activation of the phosphatidylinositol pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号