首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   261篇
  免费   9篇
  国内免费   2篇
  2024年   1篇
  2023年   4篇
  2022年   7篇
  2021年   12篇
  2020年   10篇
  2019年   9篇
  2018年   5篇
  2017年   4篇
  2016年   9篇
  2015年   10篇
  2014年   11篇
  2013年   8篇
  2012年   17篇
  2011年   27篇
  2010年   9篇
  2009年   6篇
  2008年   16篇
  2007年   16篇
  2006年   23篇
  2005年   15篇
  2004年   15篇
  2003年   13篇
  2002年   10篇
  2001年   1篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1988年   1篇
  1985年   1篇
  1977年   1篇
排序方式: 共有272条查询结果,搜索用时 15 毫秒
71.
Recent studies on the heart necrotizing process at the early stages of hamster polymyopathy have led us to believe that this hereditary disease derives from an anomalous transmembrane ion flux due to the presence of slow Na+ channels that contribute to intracellular Na+ accumulation which promote intracellular Ca2+ overload via the Ca2+ influx through the Na+-Ca2+ exchanger. In the present study, we investigated the potential beneficial effect of chronic treatment with a dual L-type Ca2+ and slow Na+ channel blockers isradipine, on the development of necrosis in myopathic hamster hearts. Young cardiomyopathic (CM) hamsters (CMH) were treated with isradipine (0.1 mg x kg(-1) x day(-1)) and nifedipine (1 mg x kg(-1) x day(-1)) for 4 consecutive weeks. Microscopic assessments were carried out in staged serial paraffin sections of heart ventricles from tissues freshly dissected at autopsy. In comparison with control nontreated hearts, which exhibited numerous necrotic calcific foci, myolytic lesions, and dilated right ventricle, isradipine treatment prevented, in a significant manner, all the above spontaneous pathological changes, while nifedipine had no effect. Our present observations provide evidence for the first time that in vivo treatment with a DHP Ca2+ channel blocker, isradipine, is cardioprotective against the development of necrosis in hereditary cardiomyopathy in the hamster. It is possible that the protective effect of isradipine in CMH could be largely due to the indirect blockade of Ca2+ influx through the Na+-Ca2+ exchanger as well as to possible direct blockade of Ca2+ influx through the T-type Ca2+ channel.  相似文献   
72.
Prostaglandins are ubiquitous lipid mediators that play pivotal roles in cardiovascular homeostasis, reproduction, and inflammation, as well as in many important cellular processes including gene expression and cell proliferation. The mechanism of action of these lipid messengers is thought to be primarily dependent on their interaction with specific cell surface receptors that belong to the heptahelical transmembrane spanning G protein-coupled receptor superfamily. Accumulating evidence suggests that these receptors may co-localize at the cell nucleus where they can modulate gene expression through a series of biochemical events. In this context, we have recently demonstrated that prostaglandin E2-EP3 receptors display an atypical nuclear compartmentalization in cerebral microvascular endothelial cells. Stimulation of these nuclear EP3 receptors leads to an increase of eNOS RNA in a cell-free isolated nuclear system. This review will emphasize these findings and describe how nuclear prostaglandin receptors, notably EP3 receptors, may affect gene expression, specifically of eNOS, by identifying putative transducing elements located within this organelle. The potential sources of lipid ligand activators for these intracellular sites will also be addressed. The expressional control of G-protein-coupled receptors located at the perinuclear envelope constitutes a novel and distinctive mode of gene regulation.  相似文献   
73.
Neurokinin 1 (NK-1) is a member of seven transmembrane G protein-coupled receptors. NK-1 interacts with peptides belonging to the tachykinin family and showed preference for substance P (SP). NK-1 is induced in bone marrow (BM) stroma. NK-1-SP interactions could lead to changes in the functions of lymphohematopoietic stem cell (LHSC). This report describes the cloning and characterization of a cDNA clone isolated after screening of three cDNA libraries with an NK-1-specific probe. Based on its expression, the cDNA clone was designated hematopoietic growth factor inducible neurokinin-1 type (HGFIN). Computational analyses predicted that HGFIN is transmembrane with the carboxyl terminal extracellular. Proteomic studies with purified HGFIN and SP showed noncovalent interactions. HGFIN-SP interactions were supported by transient expression of HGFIN in CHO cells. Transient expression of HGFIN in unstimulated BM fibroblasts led to the induction of endogenous NK-1. Since NK-1 expression in BM fibroblasts requires cell stimulation, these studies suggest that there might be intracellular crosstalk between NK-1 and HGFIN. Northern analyses with total RNA from different BM cell subsets showed that HGFIN was preferentially expressed in differentiated cells. This suggests that HGFIN might be involved in the maturation of LHSC. HGFIN was detected in several other tissues, but not in brain where NK-1 is constitutively expressed.  相似文献   
74.
The existence of a homeostatic state of stresses and strains has been axiomatic in the cardiovascular system. The objective of this study was to determine the distribution of circumferential stress and strain along the aorta and throughout the coronary arterial tree to test this hypothesis. Silicone elastomer was perfused through the porcine aorta and coronary arterial tree to cast the arteries at physiological pressure. The loaded and zero-stress dimensions of the vessels were measured. The aorta (1.8 cm) and its secondary branches were considered down to 1.5 mm diameter. The left anterior descending artery (4.5 mm) and its branches down to 10 microm were also measured. The Cauchy mean circumferential stress and midwall stretch ratio were calculated. Our results show that the stretch ratio and Cauchy stress were lower in the thoracic than in the abdominal aorta and its secondary branches. The opening angle (theta) and midwall stretch ratio (lambda) showed a linear variation with order number (n) as follows: theta = 10.2n + 63.4 (R(2) = 0.989) and lambda = 4.47 x 10(-2)n + 1.1 (R(2) = 0.995). Finally, the stretch ratio and stress varied between 1.2 and 1.6 and between 10 and 150 kPa, respectively, along the aorta and left anterior descending arterial tree. The relative uniformity of strain (50% variation) from the proximal aorta to a 10-microm arteriole implies that the vascular system closely regulates the degree of deformation. This suggests a homeostasis of strain in the cardiovascular system, which has important implications for mechanotransduction and for vascular growth and remodeling.  相似文献   
75.
Sequencing of all three fibrinogen genes from an individual with hypofibrinogenaemia led to the identification of two new point mutations in the Bbeta gene. Family studies showed the mutations Bbeta255 Arg-->His (Fibrinogen Merivale) and Bbeta148 Lys-->Asn (Fibrinogen Merivale II) were on different alleles and that only the Bbeta255 Arg-->His mutation segregated with hypofibrinogenaemia. Three simple heterozygotes for this mutation had mean fibrinogen concentrations of 1.4 mg/ml, while heterozygotes for the Bbeta148 Lys-->Asn mutation had normal fibrinogen concentrations. ESI MS analysis of endoproteinase Asp-N digests of Bbeta chains showed that the Bbeta255 Arg-->His substitution was not expressed in plasma, confirming it as the cause of the hypofibrinogenaemia. The Bbeta148 Lys-->Asn chains, on the other hand, were equally expressed with wild-type Bbeta chains in simple heterozygotes. Genotype analysis failed to detect either substitution in 182 healthy controls. Arg(255) is located in the first strand of the five-stranded sheet that forms the main feature of the betaD domain and appears to form an essential H bond with Gly(414). Both the Arg and Gly are absolutely conserved, not only in all known Bbeta chains, but also in all homologous alphaE and gamma chains and in all fibrinogen-related proteins. Protein instability from loss of this contact could easily explain the association of this mutation with hypofibrinogenaemia.  相似文献   
76.
Lysophosphatidic acid (LPA) is a bioactive molecule involved in inflammation, immunity, wound healing, and neoplasia. Its pleiotropic actions arise presumably by interaction with their cell surface G protein-coupled receptors. Herein, the presence of the specific nuclear lysophosphatidic acid receptor-1 (LPA1R) was revealed in unstimulated porcine cerebral microvascular endothelial cells (pCMVECs), LPA1R stably transfected HTC4 rat hepatoma cells, and rat liver tissue using complementary approaches, including radioligand binding experiments, electron- and cryomicroscopy, cell fractionation, and immunoblotting with three distinct antibodies. Coimmunoprecipitation studies in enriched plasmalemmal fractions of unstimulated pCMVEC showed that LPA1Rs are dually sequestrated in caveolin-1 and clathrin subcompartments, whereas in nuclear fractions LPA1R appeared primarily in caveolae. Immunofluorescent assays using a cell-free isolated nuclear system confirmed LPA1R and caveolin-1 co-localization. In pCMVEC, LPA-stimulated increases in cyclooxygenase-2 and inducible nitric-oxide synthase RNA and protein expression were insensitive to caveolea-disrupting agents but sensitive to LPA-generating phospholipase A2 enzyme and tyrosine kinase inhibitors. Moreover, LPA-induced increases in Ca2+ transients and/or iNOS expression in highly purified rat liver nuclei were prevented by pertussis toxin, phosphoinositide 3-kinase/Akt inhibitor wortmannin and Ca2+ chelator and channel blockers EGTA and SK&F96365, respectively. This study describes for the first time the nucleus as a potential organelle for LPA intracrine signaling in the regulation of pro-inflammatory gene expression.  相似文献   
77.
78.
We previously showed, in normal subjects, a positive correlation between the esophageal contraction amplitude and peak muscle thickness. The goal of this study was to determine the relationship between esophageal muscle thickness and contraction amplitude in patients with high-amplitude peristaltic and simultaneous contractions. Eleven patients with high-amplitude peristaltic contractions, 8 with diffuse esophageal spasm (DES), 7 with nonspecific (NS) motor disorder of the esophagus, and 10 normal subjects were studied using simultaneous pressure and ultrasound imaging. Pressure was recorded by manometry and ultrasound imaging with a high-frequency ultrasound probe catheter. Recordings were performed in the lower esophageal sphincter (LES) and at 2, 4, 6, 8, and 10 cm above the LES during resting state and swallow-induced contractions. Baseline esophageal muscle was thicker in the distal, compared with the proximal esophagus both in normal subjects and patient groups. Patients with DES and nutcracker esophagus (NC) have a higher baseline muscle thickness compared with normal and NS patients. Correlation between the peak pressure and the peak muscle thickness was weaker in patients with NC and DES compared with normal subjects and patients with NS. Whereas normal subjects have good correlation between delta (difference between peak and baseline) muscle thickness and peak pressures, this relationship was absent in patients with NC and DES. Increase in contraction amplitude in patients with NC and DES was associated with an increase in baseline thickness of esophageal muscularis propria. Increase in baseline thickness was specific to patients with spastic motor disorders and was not seen in patients with NS.  相似文献   
79.
It has been postulated that intracellular binding sites for platelet-activating factor (PAF) contribute to proinflammatory responses to PAF. Isolated nuclei from porcine cerebral microvascular endothelial cells (PCECs) produced PAF-molecular species in response to H(2)O(2). Using FACS analysis, we demonstrated the expression of PAF receptors on cell and nuclear surfaces of PCECs. Confocal microscopy studies performed on PCECs, Chinese hamster ovary cells stably overexpressing PAF receptors, and isolated nuclei from PCECs also showed a robust nuclear distribution of PAF receptors. Presence of PAF receptors at the cell nucleus was further revealed in brain endothelial cells by radioligand binding experiments, immunoblotting, and in situ in brain by immunoelectron microscopy. Stimulation of nuclei with methylcarbamate-PAF evoked a decrease in cAMP production and a pertussis toxin-sensitive rise in nuclear calcium, unlike observations in plasma membrane, which exhibited a pertussis toxin-insensitive elevation in inositol phosphates. Moreover, on isolated nuclei methylcarbamate-PAF evoked the expression of proinflammatory genes inducible nitric oxide synthase and cyclooxygenase-2 (COX-2) and was associated with augmented extracellular signal-regulated kinase 1/2 phosphorylation and NF-kappaB binding to the DNA consensus sequence. COX-2 expression was prevented by mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 and NF-kappaB inhibitors. This study describes for the first time the nucleus as a putative organelle capable of generating PAF and expresses its receptor, which upon stimulation induces the expression of the proinflammatory gene COX-2.  相似文献   
80.
In single rabbit aortic smooth muscle cells, and at a concentration known to induce a maximum sustained increase of intracellular Ca2+ via activation of the steady-state voltage dependent R-type Ca2+ channels, endothelin-1 (10-7 M) and insulin (80 U/ml) were found to induce a sustained increase in cytosolic free Ca2+ ([Ca]i) levels that was significantly attenuated by pre-treatment with either pertussis toxin (PTX), cholera toxin (CTX) or removal of extracellular Ca2+.However, both PTX and CTX failed to inhibit the sustained depolarization-evoked sustained Ca2+ influx and [Ca]i elevation via activation of the R-type Ca2+ channels. Moreover, ET-1 and insulin-evoked sustained increases in Ca2+ influx were not attenuated by the selective PKC inhibitor, bisindolylmaleimide (BIS), or the specific L-type Ca2+ channel blocker, nifedipine, but were completely reversed by the R-type Ca2+ channel blocker, (-) PN 200-110 (isradipine). These data suggest that both insulin and ET-1 activate the nifedipine-insensitive but isradipine-sensitive steady state voltage dependent R-type Ca2+ channels present on rabbit VSMCs and these channels are directly coupled to PTX and CTX sensitive G protein(s).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号