首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   12篇
  2023年   1篇
  2022年   4篇
  2021年   13篇
  2020年   10篇
  2019年   34篇
  2018年   17篇
  2017年   10篇
  2016年   10篇
  2015年   13篇
  2014年   7篇
  2013年   14篇
  2012年   19篇
  2011年   14篇
  2010年   6篇
  2009年   7篇
  2008年   6篇
  2007年   5篇
  2006年   6篇
  2005年   3篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
排序方式: 共有210条查询结果,搜索用时 15 毫秒
31.
32.
Microbial fuel cells (MFCs) have been shown to be capable of clean energy production through the oxidation of biodegradable organic waste using various bacterial species as biocatalysts. In this study we found Saccharomyces cerevisiae, previously known electrochemcially inactive or less active species, can be acclimated with an electron mediator thionine for electrogenic biofilm formation in MFC, and electricity production is improved with facilitation of electron transfer. Power generation of MFC was also significantly increased by thionine with both aerated and non-aerated cathode. With electrochemically active biofilm enriched with swine wastewater, MFC power increased more significantly by addition of thionine. The optimum mediator concentration was 500 mM of thionine with S. cerevisae in MFC with the maximum voltage and current generation in the microbial fuel cell were 420 mV and 700 mA/m(2), respectively. Cyclic voltametry shows that thionine improves oxidizing and reducing capability in both pure culture and acclimated biofilm as compared to non-mediated cell. The results obtained indicated that thionine has great potential to enhance power generation from unmediated yeast or electrochemically active biofilm in MFC.  相似文献   
33.
Beneficial microbes have a positive impact on the productivity and fitness of the host plant. A better understanding of the biological impacts and underlying mechanisms by which the host derives these benefits will help to address concerns around global food production and security. The recent development of omics‐based technologies has broadened our understanding of the molecular aspects of beneficial plant–microbe symbiosis. Specifically, proteomics has led to the identification and characterization of several novel symbiosis‐specific and symbiosis‐related proteins and post‐translational modifications that play a critical role in mediating symbiotic plant–microbe interactions and have helped assess the underlying molecular aspects of the symbiotic relationship. Integration of proteomic data with other “omics” data can provide valuable information to assess hypotheses regarding the underlying mechanism of symbiosis and help define the factors affecting the outcome of symbiosis. Herein, an update is provided on the current and potential applications of symbiosis‐based “omic” approaches to dissect different aspects of symbiotic plant interactions. The application of proteomics, metaproteomics, and secretomics as enabling approaches for the functional analysis of plant‐associated microbial communities is also discussed.  相似文献   
34.

Background

Small for gestational age (SGA) has high frequency which increases the risk of long-term adverse outcomes. Thus the aim of this study was to evaluate peak systolic velocity Doppler of middle cerebral artery (MCA) in SGA fetus in order to find appropriate method to diagnosis SGA sooner.

Materials and Methods

This prospective longitudinal study was conducted on 90 pregnant women with a diagnosis of SGA fetus and 90 pregnant women with normal fetus. Then MCA and umbilical artery assessment were performed for all subjects and compared between two groups.

Results

Doppler assessment showed that umbilical artery PI was significantly higher in SGA group as compared to normal group (1.11±0.37 vs 0.98±0.18, P = 0.003), while MCA PI was significantly lower in SGA group (1.77±0.44 vs 1.92±0.47, P = 0.028). On the other hand, PSV did not differ between the groups (P = 0.592). Moreover, we found that PSV was more in SGA group by grouping maternal age (<27 years) (P = 0.006), and gestational age (>34 weeks) (P<0.001).

Conclusion

The results of this study suggest that MCA PI decreased significantly in SGA fetuses, while UA PI increased in this group. Moreover, PSV increased in this group when evaluated in different subgroups (based on maternal age and gestational age).
  相似文献   
35.
36.
37.
Multiple sclerosis (MS) is a chronic inflammatory disease affecting the central nervous system (CNS). Despite introducing multiple immunomodulatory approaches for MS, there are still major concerns about possible ways for improving remyelination in this disease. Microglia exert essential roles in regulation of myelination processes, and interaction between colony-stimulating factor 1 (CSF1) with its receptor CSF1R is considered as a key regulator of microglial differentiation and survival. The aim of this study was to investigate possible roles for a CSF1R inhibitor PLX3397 in recovery of central myelination processes. Chronic demyelination was induced in mice by addition of 0.2% cuprizone to the chow for 12 weeks. Next, animals were undergoing a diet containing 290 mg/kg PLX3397 to induce microglial ablation. The PLX3397 treatment caused a significant decrease in the rate of expression for the CSF1/CSF1R axis, and a reduction in the protein expressions for the microglial marker Iba-1 and for the oligodendrocyte marker Olig-2. Findings from Luxol fast blue (LFB) staining and transmission electron microscopy (TEM) showed an increase in the rate of myelination for the mice receiving PLX3397. The rate of destruction in the nerve fibers and the extent of the gaps formed between layers of myelin sheaths was also reduced after the treatment with PLX3397. In addition, animals experienced an improvement in recovery of motor deficit after receiving PLX3397 (for all P < 0.05). It could be concluded that PLX3397 could retain myelination in the MS model possibly through regulation of the myelin environment.  相似文献   
38.
39.
40.
Cancer as a multifactorial and smart disease is now considered a challenging problem. Despite many investigations on drug discovery, it remains incurable, in part, due to insufficient understanding of its special mechanisms. For the first time, we collaterally investigated the effect of acidosis on the contribution of apoptosis, necrosis, and autophagy in MDA-MB 231 cells. Our data showed that necrosis, apoptosis, and intracellular reactive oxygen species production drastically decreased from 48 to 72 hr while cell viability and autophagy increased along with a gap between the percentages. Eventually, the decrease of necrosis and apoptosis was related to upregulation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and fatty acid synthetase, respectively. It seems that at the early stage of cancer progression, apoptosis is the main mechanism of cell mortality and afterward autophagy would be the main mechanism of cell survival. Therefore, at the acute phase of cancer, apoptotic inducer medications would be effective while at the chronic phase of cancer progression, autophagy inhibitor medication would be added as well. This eventually means that autophagy acts as both cell death and survival mechanisms at the onset of cancer progression with the approach towards cell survival. Besides other unknown cell survival mechanisms are involved in cell viability, except for apoptosis and necrosis inhibition and autophagy improvement. This study reiterates the inefficaciousness of autophagy inhibitor's medication at the onset of disease. It also emphasizes discovering other cell death mechanisms for cancer cell adaptation at the onset of disease with the aim of their targeting in cancer invasion therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号