首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   347篇
  免费   16篇
  2024年   1篇
  2023年   2篇
  2022年   9篇
  2021年   18篇
  2020年   15篇
  2019年   37篇
  2018年   22篇
  2017年   16篇
  2016年   14篇
  2015年   21篇
  2014年   17篇
  2013年   30篇
  2012年   34篇
  2011年   28篇
  2010年   15篇
  2009年   15篇
  2008年   12篇
  2007年   12篇
  2006年   7篇
  2005年   9篇
  2004年   3篇
  2003年   5篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1999年   1篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1973年   2篇
排序方式: 共有363条查询结果,搜索用时 312 毫秒
91.
Complex tissues, such as the brain, are composed of multiple different cell types, each of which have distinct and important roles, for example in neural function. Moreover, it has recently been appreciated that the cells that make up these sub-cell types themselves harbour significant cell-to-cell heterogeneity, in particular at the level of gene expression. The ability to study this heterogeneity has been revolutionised by advances in experimental technology, such as Wholemount in Situ Hybridizations (WiSH) and single-cell RNA-sequencing. Consequently, it is now possible to study gene expression levels in thousands of cells from the same tissue type. After generating such data one of the key goals is to cluster the cells into groups that correspond to both known and putatively novel cell types. Whilst many clustering algorithms exist, they are typically unable to incorporate information about the spatial dependence between cells within the tissue under study. When such information exists it provides important insights that should be directly included in the clustering scheme. To this end we have developed a clustering method that uses a Hidden Markov Random Field (HMRF) model to exploit both quantitative measures of expression and spatial information. To accurately reflect the underlying biology, we extend current HMRF approaches by allowing the degree of spatial coherency to differ between clusters. We demonstrate the utility of our method using simulated data before applying it to cluster single cell gene expression data generated by applying WiSH to study expression patterns in the brain of the marine annelid Platynereis dumereilii. Our approach allows known cell types to be identified as well as revealing new, previously unexplored cell types within the brain of this important model system.  相似文献   
92.
Journal of Applied Phycology - Light is one of the most critical factors for the growth of microalgae; therefore, optimization and accessibility of light improve productivity and wastewater...  相似文献   
93.
Probiotics and Antimicrobial Proteins - The aim of this study was to evaluate the effects of lactoferrin (Lf) on growth and feeding performance, biochemical and immune parameters in Asian sea bass...  相似文献   
94.
Multiple sclerosis (MS) is the most common autoimmune disease characterized by multifocal areas of inflammatory demyelination within the central nervous system. Cytomegalovirus (CMV) has a complex pathobiology and in most cases is simply asymptomatic. There is some recent controversy over the role of CMV in the pathology of MS. The aim of this study was to evaluate active CMV infection and its effect on the humoral immunity in patients with MS. Serum, plasma, peripheral blood mononuclear cells (PBMCs), saliva and urine collected from MS patients (n=78) and healthy subjects (n=123) were screened for the presence of anti-CMV antibodies and CMV-DNA by nephelometric and PCR methods. Concentrations of total antibodies in MS subtypes were measured using both nephelometric and enzyme linked fluorescent assay (ELFA) techniques. The results extend the observation of an increased frequency of CMV-DNA in patients, in contrast with controls (p<0.001). Furthermore, systemic CMV infections were found in 25.5% of patients and only 3.2% of controls (p<0.001). There was significant difference in the titers of anti-CMV IgG and total IgE in patient and controls (P<0.001). These results support the hypothesis that CMV may contribute to MS thought to establish systemic infection process and induce immune response.  相似文献   
95.
Uropathogenic Escherichia coli (UPEC) bacteria are the principal cause of urinary tract infections (UTI). Because these bacteria propagate intracellularly, the cellular immune response is an important factor in UTIs. Therefore, we designed a genetic construct to induce a cellular immune response. In order to develop a genetic construct that induces strong cellular immunity against this pathogen, we used the fimH synthetic gene according to mammalian codon usage, and the gene expression was compared with wild type codon usage. Initially, we designed two constructs, pVAX/fimH mam and pVAX/fimH wt, which contain mammalian and wild type codon usage, respectively. The Cos-7 cell line was transfected separately with a complex of pVAX/fimH mam-ExGene 500 poly cationic polymer and pVAX/fimH wt-ExGene 500 poly cationic polymer. Expression of the fimH gene in both constructs in COS7 cells was confirmed by RT-PCR, SDS-PAGE, and Western blotting. Both of the pVAX/fimH cassettes expressed inserted fimH genes (mam and wt) in Cos-7 cells. Our results suggest that codon optimization successfully expressed the fimH gene because the fimH gene with mammalian codon usage is compatible with the eukaryotic expression system. Therefore, mammalian codon usage could be appropriate in a pVAX/fimH construct as a DNA vaccine.  相似文献   
96.

Background  

Despite the heavy burden and impact of the polycystic ovary syndrome (PCOS) in reproduction and public health, estimates regarding its prevalence at community levels are limited. We aimed to ascertain prevalence of PCOS in a community based sample using the National Institute of Health (NIH), the Rotterdam consensus (Rott.) and the Androgen Excess Society (AES) criteria.  相似文献   
97.
After the successful completion of the Human Genome Project, the Human Proteome Organization has recently officially launched a global Human Proteome Project (HPP), which is designed to map the entire human protein set. Given the lack of protein-level evidence for about 30% of the estimated 20,300 protein-coding genes, a systematic global effort will be necessary to achieve this goal with respect to protein abundance, distribution, subcellular localization, interaction with other biomolecules, and functions at specific time points. As a general experimental strategy, HPP research groups will use the three working pillars for HPP: mass spectrometry, antibody capture, and bioinformatics tools and knowledge bases. The HPP participants will take advantage of the output and cross-analyses from the ongoing Human Proteome Organization initiatives and a chromosome-centric protein mapping strategy, termed C-HPP, with which many national teams are currently engaged. In addition, numerous biologically driven and disease-oriented projects will be stimulated and facilitated by the HPP. Timely planning with proper governance of HPP will deliver a protein parts list, reagents, and tools for protein studies and analyses, and a stronger basis for personalized medicine. The Human Proteome Organization urges each national research funding agency and the scientific community at large to identify their preferred pathways to participate in aspects of this highly promising project in a HPP consortium of funders and investigators.  相似文献   
98.
99.
Drought is one of the major factors limiting the yield of wheat (Triticum aestivum L.) particularly during grain filling. Under terminal drought condition, remobilization of pre-stored carbohydrates in wheat stem to grain has a major contribution in yield. To determine the molecular mechanism of stem reserve utilization under drought condition, we compared stem proteome patterns of two contrasting wheat landraces (N49 and N14) under a progressive post-anthesis drought stress, during which period N49 peduncle showed remarkably higher stem reserves remobilization efficiency compared to N14. Out of 830 protein spots reproducibly detected and analyzed on two-dimensional electrophoresis gels, 135 spots showed significant changes in at least one landrace. The highest number of differentially expressed proteins was observed in landrace N49 at 20days after anthesis when active remobilization of dry matter was observed, suggesting a possible involvement of these proteins in effective stem reserve remobilization of N49. The identification of 82 of differentially expressed proteins using mass spectrometry revealed a coordinated expression of proteins involved in leaf senescence, oxidative stress defense, signal transduction, metabolisms and photosynthesis which might enable N49 to efficiently remobilized its stem reserves compared to N14. The up-regulation of several senescence-associated proteins and breakdown of photosynthetic proteins in N49 might reflect the fact that N49 increased carbon remobilization from the stem to the grains by enhancing senescence. Furthermore, the up-regulation of several oxidative stress defense proteins in N49 might suggest a more effective protection against oxidative stress during senescence in order to protect stem cells from premature cell death. Our results suggest that wheat plant might response to soil drying by efficiently remobilize assimilates from stem to grain through coordinated gene expression.  相似文献   
100.
A diverse collection of wheat germplasm, consisting of 100 bread wheat lines with varying levels of salinity tolerance were evaluated based on incomplete block design (lattice) with two replications in field conditions. Plant material was screened for salinity tolerance under normal and saline field conditions. Subsequently in order to assess the haplotype diversity of QTLs attributed to salinity tolerance in wheat (Triticum aestivum), a collection of 30 extremes tolerant and sensitive genotypes among them were selected for genotyping on the basis of morphological, physiological and phenological traits. Genotyping was done using microsatellite markers which had been detected as the flanking regions of large effect QTLs attributed to salinity tolerance on chromosomes 2A, 4D and 3B. Combined analysis of saline and normal conditions revealed that genotypes showed highly significant responses. Association analysis of SSR markers with traits, showed markers Xcfa2121b, Xgwm10 and Xgwm296 on chromosome 2A and markers Xgwm194 and xgwm624 for chromosome 4D, had significant association with most of measured traits. Haplotype diversity analysis showed markers Xgwm10, Xgwm445, Xbarc353.2, Xgwm312, Xgwm515 and Xwmc296 on chromosome 2A as well as markers Xwmc326 and Xgwm345, Xbarc48.4 on chromosomes 3B and 4D were identified as the best markers attributed to salinity tolerance and they can be informative markers for improvement of salinity tolerance through marker-assisted selection programs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号