首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   31篇
  148篇
  2022年   2篇
  2021年   9篇
  2020年   4篇
  2019年   6篇
  2018年   5篇
  2017年   3篇
  2016年   4篇
  2015年   4篇
  2014年   7篇
  2013年   9篇
  2012年   5篇
  2011年   9篇
  2010年   3篇
  2009年   7篇
  2008年   4篇
  2007年   2篇
  2006年   9篇
  2005年   6篇
  2004年   10篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1988年   3篇
  1987年   1篇
  1986年   3篇
  1984年   1篇
  1983年   2篇
  1980年   1篇
  1951年   1篇
排序方式: 共有148条查询结果,搜索用时 15 毫秒
71.
Here, we report a structure-based virtual screening of the ZINC database (containing about five million compounds) by computational docking and the analysis of docking energy calculations followed by in vitro screening against H. pylori urease enzyme. One of the compounds selected showed urease inhibition in the low micromolar range. Barbituric acid and compounds 1a, 1d, 1e, 1f, 1g, 1h were found to be more potent urease inhibitors than the standard inhibitor hydroxyurea, yielding IC(50) values of 41.6, 83.3, 66.6, 50, 58.8, and 60 μM, respectively (IC(50) of hydroxyurea = 100 μM). 5-Benzylidene barbituric acid has enhanced biological activities compared to barbituric acid. Furthermore, the results indicated that among the substituted 5-benzylidene barbiturates, those with para substitution have higher urease inhibitor activities. This may be because the barbituric acid moiety is closer to the bimetallic nickel center in unsubstituted or para-substituted than in ortho- or meta-substituted analogs, so it has greater chelating ability.  相似文献   
72.
Earlier studies of a group of monoclonal antibody-resistant (mar) mutants of herpes simplex virus type 1 glycoprotein C (gC) operationally defined two distinct antigenic sites on this molecule, each consisting of numerous overlapping epitopes. In this report, we further define epitopes of gC by sequence analysis of the mar mutant gC genes. In 18 mar mutants studied, the mar phenotype was associated with a single nucleotide substitution and a single predicted amino acid change. The mutations were localized to two regions within the coding sequence of the external domain of gC and correlated with the two previously defined antigenic sites. The predicted amino acid substitutions of site I mutants resided between residues Gln-307 and Pro-373, whereas those of site II mutants occurred between amino acids Arg-129 and Glu-247. Of the 12 site II mutations, 9 induced amino acid substitutions within an arginine-rich segment of 8 amino acids extending from residues 143 to 151. The clustering of the majority of substituted residues suggests that they contribute to the structure of the affected sites. Moreover, the patterns of substitutions which affected recognition by antibodies with similar epitope specificities provided evidence that epitope structures are physically linked and overlap within antigenic sites. Of the nine epitopes defined on the basis of mutations, three were located within site I and six were located within site II. Substituted residues affecting the site I epitopes did not overlap substituted residues of site II, supporting our earlier conclusion that sites I and II reside in spatially distinct antigenic domains. A computer analysis of the distribution of charged residues and the predicted secondary structural features of wild-type gC revealed that the two antigenic sites reside within the most hydrophilic regions of the molecule and that the antigenic residues are likely to be organized as beta sheets which loop out from the surface of the molecule. Together, these data and our previous studies support the conclusion that the mar mutations identified by sequence analysis very likely occur within or near the epitope structures themselves. Thus, two highly antigenic regions of gC have now been physically and genetically mapped to well-defined domains of the protein molecule.  相似文献   
73.
N E Pederson  S Person    F L Homa 《Journal of virology》1992,66(10):6226-6232
To investigate the cis-acting sequences involved in regulation of a herpes simplex virus gamma 1 gene, deletion analyses of the glycoprotein B (gB) gene promoter were performed. In transfection assays with gB-chloramphenicol acetyltransferase plasmids, high-level constitutive expression from the gB promoter was found with an 89-bp sequence (-69 to +20). Additional sequences in the 5'-transcribed noncoding leader region (+20 to +136) were required for full stimulation by herpes simplex virus infection. Plasmids with progressive deletions of the gB leader sequence demonstrated that chloramphenicol acetyltransferase expression in infected cells was proportional to the length of the leader region retained. In recombinant viruses containing a gB-gC gene fusion, a similar 83-bp (-60 to +23) region of the gB gene was found to promote accurately initiated gC mRNA from the viral genome with the same kinetics as the wild-type gB gene. Although the kinetics of expression remained the same, RNA abundance was greater with a 298-bp (-260 to +38) promoter than with the 83-bp promoter.  相似文献   
74.
A complex of metronidazole (MTZ) with zinc ion was synthesized and characterized by UV-Vis, Fourier transform infrared (FT-IR), 1H-NMR, X-ray crystallography and thermal gravimetric-differential thermal analysis (TG-DTA). The cytotoxicity effect of the synthesized complex investigated over SKNMC, A549, MCF-7, and MCDK cell lines and the results have shown that it has high cytotoxic potential over cancer cell lines. In order to clarify the mechanism of cell cytotoxicity, the oxidative stress and binding of the complex to the calf thymus-DNA studied by evaluating the intrinsic binding constant and defining thermodynamic parameters of complex over the DNA accompanying with in silico molecular modeling method. For this purpose, the complex optimized at the B3LYP/LANL2DZ level and docked over the DNA structure. The results revealed that the metronidazole-zinc complex interacted with DNA via hydrogen binding and electrostatic interaction to the minor groove region and phosphate backbone of DNA, respectively.  相似文献   
75.
Posttranslational modifications (PTMs) such as phosphorylation of RNA-binding proteins (RBPs) regulate several critical steps in RNA metabolism, including spliceosome assembly, alternative splicing, and mRNA export. Notably, serine-/arginine- (SR)-rich RBPs are densely phosphorylated compared with the remainder of the proteome. Previously, we showed that dephosphorylation of the splicing factor SRSF2 regulated increased interactions with similar arginine-rich RBPs U1-70K and LUC7L3. However, the large-scale functional and structural impact of these modifications on RBPs remains unclear. In this work, we dephosphorylated nuclear extracts using phosphatase in vitro and analyzed equal amounts of detergent-soluble and -insoluble fractions by mass-spectrometry-based proteomics. Correlation network analysis resolved 27 distinct modules of differentially soluble nucleoplasm proteins. We found classes of arginine-rich RBPs that decrease in solubility following dephosphorylation and enrich the insoluble pelleted fraction, including the SR protein family and the SR-like LUC7L RBP family. Importantly, increased insolubility was not observed across broad classes of RBPs. We determined that phosphorylation regulated SRSF2 structure, as dephosphorylated SRSF2 formed high-molecular-weight oligomeric species in vitro. Reciprocally, phosphorylation of SRSF2 by serine/arginine protein kinase 2 (SRPK2) in vitro decreased high-molecular-weight SRSF2 species formation. Furthermore, upon pharmacological inhibition of SRPKs in mammalian cells, we observed SRSF2 cytoplasmic mislocalization and increased formation of cytoplasmic granules as well as cytoplasmic tubular structures that associated with microtubules by immunocytochemical staining. Collectively, these findings demonstrate that phosphorylation may be a critical modification that prevents arginine-rich RBP insolubility and oligomerization.  相似文献   
76.
77.
Ischemia-reperfusion (I/R) injury causes skeletal muscle infarction and ischemic preconditioning (IPC) augments ischemic tolerance in animal models. To date, this has not been demonstrated in human skeletal muscle. This study aimed to develop an in vitro model to investigate the efficacy of simulated IPC in human skeletal muscle. Human skeletal muscle strips were equilibrated in oxygenated Krebs-Henseleit-HEPES buffer (37 degrees C). Aerobic and reperfusion phases were simulated by normoxic incubation and reoxygenation, respectively. Ischemia was simulated by hypoxic incubation. Energy store, cell viability, and cellular injury were assessed using ATP, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), and lactate dehydrogenase (LDH) assays, respectively. Morphological integrity was assessed using electron microscopy. Studies were designed to test stability of the preparation (n = 5-11) under normoxic incubation over 24 h; the effect of 1, 2, 3, 4, or 6 h hypoxia followed by 2 h of reoxygenation; and the protective effect of hypoxic preconditioning (HPC; 5 min of hypoxia/5 min of reoxygenation) before 3 h of hypoxia/2 h of reoxygenation. Over 24 h of normoxic incubation, muscle strips remained physiologically intact as assessed by MTT, ATP, and LDH assays. After 3 h of hypoxia/2 h of reoxygenation, MTT reduction levels declined to 50.1 +/- 5.5% (P < 0.05). MTT reduction levels in HPC (82.3 +/- 10.8%) and normoxic control (81.3 +/- 10.2%) groups were similar and higher (P < 0.05) than the 3 h of hypoxia/2 h of reoxygenation group (45.2 +/- 5.8%). Ultrastructural morphology was preserved in normoxic and HPC groups but not in the hypoxia/reoxygenation group. This is the first study to characterize a stable in vitro model of human skeletal muscle and to demonstrate a protective effect of HPC in human skeletal muscle against hypoxia/reoxygenation-induced injury.  相似文献   
78.
Previously (Holland et al., J. Virol. 52:566-574, 1984; Kikuchi et al., J. Virol. 52:806-815, 1984) we described the isolation and partial characterization of over 100 herpes simplex virus type 1 mutants which were resistant to neutralization by a pool of glycoprotein C- (gC) specific monoclonal antibodies. The genetic basis for the inability of several of these gC- mutants to express an immunoreactive envelope form of gC is reported here. Comparative nucleotide sequence analysis of the gC gene of the six mutants gC-3, gC-8, gC-49, gC-53, gC-85, and synLD70, which secrete truncated gC polypeptides, with that of the wild-type KOS 321 gC gene revealed that these mutant phenotypes were caused by frameshift or nonsense mutations, resulting in premature termination of gC translation. Secretion of the gC polypeptide from cells infected with these mutants was due to the lack of a functional transmembrane anchor sequence. The six secretor mutants were tested for suppression of amber mutations in mixed infection with a simian virus 40 amber suppressor vector. Mutant gC-85 was suppressed and produced a wild-type-sized membrane-bound gC. Nucleotide sequence analysis of the six gC deletion mutants gC-5, gC-13, gC-21, gC-39, gC-46, and gC-98 revealed that they carried identical deletions which removed 1,702 base pairs of the gC gene. The deletion, which was internal to the gC gene, removed the entire gC coding sequence and accounted for the novel 1.1-kilobase mRNA previously seen in infections with these mutants. The mutant gC-44 was previously shown to produce a membrane-bound gC protein indistinguishable in molecular weight from wild-type gC. This mutant differed from wild-type virus in that it had reduced reactivity with virus-neutralizing monoclonal antibodies. Nucleotide sequence analysis of the gC gene of mutant gC-44 demonstrated a point mutation which changed amino acid 329 of gC from a serine to a phenylalanine.  相似文献   
79.
Distal skin ischemic necrosis is a common complication in skin flap surgery. The pathogenesis of skin flap ischemic necrosis is unclear, and there is no clinical treatment available. Here, we used the 4 x 10 cm rat dorsal skin flap model to test our hypothesis that subcutaneous injection of vascular endothelial growth factor 165 (VEGF165) in skin flaps at the time of surgery is effective in augmentation of skin flap viability, which is associated with an increase in nitric oxide (NO) production, and the mechanism involves 1) an increase in skin flap blood flow in the early stage after surgery and 2) enhanced angiogenesis subsequently to sustain increased skin flap blood flow and viability. We observed that subcutaneous injection of VEGF165 in skin flaps at the time of surgery increased skin flap viability in a dose-dependent manner. Subcutaneous injection of VEGF165 at the dose of 2 microg/flap increased skin flap viability by 28% (P < 0.05; n = 8). Over 80% of this effect was blocked by intramuscular injection of the NO synthase (NOS) inhibitor Nomega-nitro-L-arginine (13 mg/kg) 45 min before surgery (P < 0.05; n = 8). The VEGF165 treatment also increased skin flap blood flow (2.68 +/- 0.63 ml x min(-1) x 100 g(-1)) compared with the control (1.26 +/- 0.10 ml x min(-1) x 100 g(-1); P < 0.05, n = 6) assessed 6 h postoperatively. There was no change in skin flap capillary density at this time point. VEGF165-induced increase in capillary density (32.2 +/- 1.1 capillaries/mm2; P < 0.05, n = 7) compared with control (24.6 +/- 1.4 capillaries/mm2) was seen 7 days postoperatively. There was also evidence to indicate that VEGF165-induced NO production in skin flaps was stimulated by activation of NOS activity followed by upregulation of NOS protein expression. These observations support our hypothesis and for the first time provide an important insight into the mechanism of acute local VEGF165 protein therapy in mitigation of skin flap ischemic necrosis.  相似文献   
80.
Agglutination of human erythrocytes by the lectin concanavalin A is enhanced when the erythrocytes are pretreated with neuraminidase, which removes sialic acids, or with pronase, which degrades both the glycophorins and band 3 protein. In the present work transmission electron microscopy of the enzymatically pretreated erythrocytes shows a regular pattern of interruption of contact between interacting plasma membranes. The lengths characteristic of the pattern were 0.66 and 0.50 μm for pronase- and neuraminidase-pretreated cells, respectively. Agglutination of normal erythrocytes and of neuraminidase-pretreated erythrocytes can be fully reversed by exposure to the competitive inhibitor methyl α-D-mannopyranoside. Complete reversal of contact does not occur with pronase-pretreated cells. The comparatively greater tenacity of contact between cells that were treated with pronase before exposure to lectin argues for an involvement of nonspecific interactions in the agglutination process. The results are compared with previously published studies of spatially periodic contact patterns induced by a range of other polymers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号