首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   3篇
  2022年   1篇
  2021年   10篇
  2020年   2篇
  2018年   2篇
  2016年   2篇
  2015年   5篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   9篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2001年   1篇
  2000年   3篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1990年   3篇
  1989年   1篇
  1986年   1篇
  1984年   1篇
  1977年   3篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1971年   2篇
  1969年   2篇
  1968年   2篇
  1967年   1篇
排序方式: 共有81条查询结果,搜索用时 31 毫秒
71.
72.
The present study involved two pot experiments to investigate the response of mung bean to the individual or combined SO42− and selenate application under drought stress. A marked increment in biomass and NPK accumulation was recorded in mung bean seedlings fertilized with various SO42− sources, except for CuSO4. Compared to other SO42− fertilizers, ZnSO4 application resulted in the highest increase in growth attributes and shoot nutrient content. Further, the combined S and Se application (S + Se) significantly enhanced relative water content (16%), SPAD value (72%), photosynthetic rate (80%) and activities of catalase (79%), guaiacol peroxidase (53%) and superoxide dismutase (58%) in the leaves of water-stressed mung bean plants. Consequently, the grain yield of mung bean was markedly increased by 105% under water stress conditions. Furthermore, S + Se application considerably increased the concentrations of P (47%), K (75%), S (80%), Zn (160%), and Fe (15%) in mung bean seeds under drought stress conditions. These findings indicate that S + Se application potentially increases the nutritional quality of grain legumes by stimulating photosynthetic apparatus and antioxidative machinery under water deficit conditions. Our results could provide the basis for further experiments on cross-talk between S and Se regulatory pathways to improve the nutritional quality of food crops.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-00992-6.  相似文献   
73.
74.
Investigations on the natural enemies ofChenopodium spp. in Pakistan showed that 40 insects and a fungus were associated with this weed. Of these, 3 insects,Trioza chenopodii Reuter,Gasteroclisus auriculatus Sahlb.Hayhustria? atriplicis (L.) and a fungusPhysoderma pulposum have some potential as beneficial control agents.T. chenopodii was the most effective destroyer of the weed. It developed 5 generations per year and was restricted to the generaChenopodium, Atriplex andHalimione.  相似文献   
75.
Macrophages (Mφs) are multifunctional immune cells which are involved in the regulation of immune and inflammatory responses, as well as in tissue repair and remodeling. In tissues, Mφs reside in areas which are rich in extracellular matrix (ECM), the structural component which also plays an essential role in regulating a variety of cellular functions. A major ECM protein encountered by Mφs is type I collagen, the most abundant of the fibril-forming collagens. In this study, the adhesion of RAW 264.7 murine Mphis to native fibrillar, monomeric, and denatured type I collagen was investigated. Using atomic force microscopy, structural differences between fibrillar and monomeric type I collagen were clearly resolved. When cultured on fibrillar type I collagen, Mphis adhered poorly. In contrast, they adhered significantly to monomeric, heat-denatured, or collagenase-modified type I collagen. Studies utilizing anti-beta1 and -beta2 integrin adhesion-blocking antibodies, RGD-containing peptides, or divalent cation-free conditions did not inhibit Mphi; adhesion to monomeric or denatured type I collagen. However, macrophage scavenger receptor (MSR) ligands and anti-MSR antibodies significantly blocked Mphi; adhesion to denatured and monomeric type I collagen strongly suggesting the involvement of the MSR as an adhesion molecule for denatured type I collagen. Further analysis by Western blot identified the MSR as the primary receptor for denatured type I collagen among Mphi; proteins purified from a heat-denatured type I collagen affinity column. These findings indicate that Mphis adhere selectively to denatured forms of type I collagen, but not the native fibrillar conformation, via their scavenger receptors.  相似文献   
76.
To illustrate vascular modification accompanying transition from aquatic to amphibious life in gobies, we investigated the respiratory vasculatures of the gills and the bucco‐opercular cavities in one of the most terrestrially‐adapted mudskippers, Periophthalmodon schlosseri, using the corrosion casting technique. The vascular system of Pn. schlosseri retains the typical fish configuration with a serial connection of the gills and the systemic circuits, suggesting a lack of separation of O2‐poor systemic venous blood and O2‐rich effluent blood from the air‐breathing surfaces. The gills appear to play a limited role in gas exchange, as evidenced from the sparsely‐spaced short filaments and the modification of secondary lamellar vasculature into five to eight parallel channels that are larger than red blood cell size, unlike the extensive sinusoidal system seen in purely water‐breathing fishes. In contrast, the epithelia of the bucco‐opercular chamber, branchial arches, and leading edge of the filaments are extensively laden with capillaries having a short (<10 μm) diffusion distance, which strongly demonstrate the principal respiratory function of these surfaces. These capillaries form spiral coils of three to five turns as they approach the epithelial surface. The respiratory capillaries of the bucco‐opercular chamber are supplied by efferent blood from the gills and drained by the systemic venous pathway. We also compared the degree of capillarization in the bucco‐opercular epithelia of Pn. schlosseri with that of the three related intertidal‐burrowing gobies (aquatic, non‐air‐breathing Acanthogobius hasta; aquatic, facultative air‐breathing Odontamblyopus lacepedii; amphibious air‐breathing Periophthalmus modestus) through histological analysis. The comparison revealed a clear trend of wider distribution of denser capillary networks in these epithelia with increasing reliance on air breathing, consistent with the highest aerial respiratory capacity of Pn. schlosseri among the four species. J. Morphol. 2011. © 2011 Wiley‐Liss, Inc.  相似文献   
77.
78.
International Journal of Peptide Research and Therapeutics - Aim of present study was to investigate the interaction of coomassie brilliant blue G-250 (CBBG-250) with bovine serum albumin (BSA) by...  相似文献   
79.
80.
Plasmonics - This paper presents a theoretical study on the propagation of electromagnetic surface waves supported by the metamaterial-filled bi-layered graphene structure. The effective surface...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号