首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1082篇
  免费   75篇
  1157篇
  2023年   8篇
  2022年   12篇
  2021年   29篇
  2020年   17篇
  2019年   28篇
  2018年   20篇
  2017年   16篇
  2016年   45篇
  2015年   65篇
  2014年   62篇
  2013年   88篇
  2012年   82篇
  2011年   111篇
  2010年   59篇
  2009年   43篇
  2008年   67篇
  2007年   72篇
  2006年   53篇
  2005年   68篇
  2004年   55篇
  2003年   33篇
  2002年   44篇
  2001年   9篇
  2000年   6篇
  1999年   2篇
  1998年   3篇
  1997年   7篇
  1996年   4篇
  1995年   1篇
  1994年   5篇
  1993年   2篇
  1992年   5篇
  1991年   4篇
  1990年   7篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   7篇
  1983年   2篇
  1980年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1957年   1篇
排序方式: 共有1157条查询结果,搜索用时 15 毫秒
91.
92.
How extraintestinal pathogenic Escherichia coli (ExPEC) and antimicrobial-resistant E. coli disseminate through the population is undefined. We studied public restrooms for contamination with E. coli and ExPEC in relation to source and extensively characterized the E. coli isolates. For this, we cultured 1,120 environmental samples from 56 public restrooms in 33 establishments (obtained from 10 cities in the greater Minneapolis-St. Paul, MN, metropolitan area in 2003) for E. coli and compared ecological data with culture results. Isolates underwent virulence genotyping, phylotyping, clonal typing, pulsed-field gel electrophoresis (PFGE), and disk diffusion antimicrobial susceptibility testing. Overall, 168 samples (15% from 89% of restrooms) fluoresced, indicating presumptive E. coli: 25 samples (2.2% from 32% of restrooms) yielded E. coli isolates, and 10 samples (0.9% from 16% of restrooms) contained ExPEC. Restroom category and cleanliness level significantly predicted only fluorescence, gender predicted fluorescence and E. coli, and feces-like material and toilet-associated sites predicted all three endpoints. Of the 25 E. coli isolates, 7 (28%) were from phylogenetic group B2(virulence-associated), and 8 (32%) were ExPEC. ExPEC isolates more commonly represented group B2 (50% versus 18%) and had significantly higher virulence gene scores than non-ExPEC isolates. Six isolates (24%) exhibited ≥3-class antibiotic resistance, 10 (40%) represented classic human-associated sequence types, and one closely resembled reference human clinical isolates by pulsed-field gel electrophoresis. Thus, E. coli, ExPEC, and antimicrobial-resistant E. coli sporadically contaminate public restrooms, in ways corresponding with restroom characteristics and within-restroom sites. Such restroom-source E. coli strains likely reflect human fecal contamination, may pose a health threat, and may contribute to population-wide dissemination of such strains.  相似文献   
93.
Most molecular processes during plant development occur with a particular spatio-temporal specificity. Thus far, it has remained technically challenging to capture dynamic protein-protein interactions within a growing organ, where the interplay between cell division and cell expansion is instrumental. Here, we combined high-resolution sampling of the growing maize (Zea mays) leaf with tandem affinity purification followed by mass spectrometry. Our results indicate that the growth-regulating SWI/SNF chromatin remodeling complex associated with ANGUSTIFOLIA3 (AN3) was conserved within growing organs and between dicots and monocots. Moreover, we were able to demonstrate the dynamics of the AN3-interacting proteins within the growing leaf, since copurified GROWTH-REGULATING FACTORs (GRFs) varied throughout the growing leaf. Indeed, GRF1, GRF6, GRF7, GRF12, GRF15, and GRF17 were significantly enriched in the division zone of the growing leaf, while GRF4 and GRF10 levels were comparable between division zone and expansion zone in the growing leaf. These dynamics were also reflected at the mRNA and protein levels, indicating tight developmental regulation of the AN3-associated chromatin remodeling complex. In addition, the phenotypes of maize plants overexpressing miRNA396a-resistant GRF1 support a model proposing that distinct associations of the chromatin remodeling complex with specific GRFs tightly regulate the transition between cell division and cell expansion. Together, our data demonstrate that advancing from static to dynamic protein-protein interaction analysis in a growing organ adds insights in how developmental switches are regulated.  相似文献   
94.
Lignin is an aromatic polymer derived from the combinatorial coupling of monolignol radicals in the cell wall. Recently, various glycosylated lignin oligomers have been revealed in Arabidopsis thaliana. Given that monolignol oxidation and monolignol radical coupling are known to occur in the apoplast, and glycosylation in the cytoplasm, it raises questions about the subcellular localization of glycosylated lignin oligomer biosynthesis and their storage. By metabolite profiling of Arabidopsis leaf vacuoles, we show that the leaf vacuole stores a large number of these small glycosylated lignin oligomers. Their structural variety and the incorporation of alternative monomers, as observed in Arabidopsis mutants with altered monolignol biosynthesis, indicate that they are all formed by combinatorial radical coupling. In contrast to the common believe that combinatorial coupling is restricted to the apoplast, we hypothesized that the aglycones of these compounds are made within the cell. To investigate this, leaf protoplast cultures were cofed with 13C6-labeled coniferyl alcohol and a 13C4-labeled dimer of coniferyl alcohol. Metabolite profiling of the cofed protoplasts provided strong support for the occurrence of intracellular monolignol coupling. We therefore propose a metabolic pathway involving intracellular combinatorial coupling of monolignol radicals, followed by oligomer glycosylation and vacuolar import, which shares characteristics with both lignin and lignan biosynthesis.  相似文献   
95.
96.
Like antibodies, aptamers are highly valuable as bioreceptor molecules for protein biomarkers because of their excellent selectivity, specificity and stability. The integration of aptamers with semiconducting materials offers great potential for the development of reliable aptasensors. In this paper we present an aptamer-based impedimetric biosensor using a nanocrystalline diamond (NCD) film as a working electrode for the direct and label-free detection of human immunoglobulin E (IgE). Amino (NH(2))-terminated IgE aptamers were covalently attached to carboxyl (COOH)-modified NCD surfaces using carbodiimide chemistry. Electrochemical impedance spectroscopy (EIS) was applied to measure the changes in interfacial electrical properties that arise when the aptamer-functionalized diamond surface was exposed to IgE solutions. During incubation, the formation of aptamer-IgE complexes caused a significant change in the capacitance of the double-layer, in good correspondence with the IgE concentration. The linear dynamic range of IgE detection was from 0.03 μg/mL to 42.8 μg/mL. The detection limit of the aptasensor reached physiologically relevant concentrations (0.03 μg/mL). The NCD-based aptasensor was demonstrated to be highly selective even in the presence of a large excess of IgG. In addition, the aptasensor provided reproducible signals during six regeneration cycles. The impedimetric aptasensor was successfully tested on human serum samples, which opens up the potential of using EIS for direct and label-free detection of IgE levels in blood serum.  相似文献   
97.
We report the discovery of a potent, selective, and orally bioavailable dual CCR2 and CCR5 antagonist (3S,4S)-N-[(1R,3S)-3-isopropyl-3-({4-[4-(trifluoromethyl)pyridin-2-yl]piperazin-1-yl}carbonyl)cyclopentyl]-3-methoxytetrahydro-2H-pyran-4-amine (19). After evaluation in 28-day toxicology studies, compound 19 (INCB10820/PF-4178903) was selected as a clinical candidate.  相似文献   
98.
99.
The colonization rates of understorey plants into forests growing on former agricultural land differ remarkably among species. Different dispersal and recruitment largely account for the contrasting colonization rates, but different effects of the soil legacies of former agricultural land use on plant performance may also play a role. Seven herbaceous forest species were sampled in paired post-agricultural and ancient forest stands to study whether land-use history has an effect on the aboveground nutrient concentrations (N, P and N:P ratios) and biomass of forest herbs and, if so, whether slow and fast colonizing species respond differently. Results showed that P concentrations were significantly affected by former land use with higher concentrations in the post-agricultural stands. N concentrations were unaffected and N:P ratios were significantly higher in the ancient stands. Nutrient concentrations varied considerably among species, but the variation was unrelated to their colonization capacity. Six out of the seven species had higher biomass in the post-agricultural stands relative to the ancient stands, and the degree to which the species increased biomass was positively related to their colonization capacity, i.e., the fast colonizing species showed the strongest increase. Such differential responses to past land use may contribute to the contrasting colonization capacity of forest plants. Land-use history thus affected both the nutrient concentrations and biomass of forest herbs, and only the biomass response was related to colonization capacity.  相似文献   
100.
The advent of algorithms for fragmentation spectrum-based label-free quantitative proteomics has enabled straightforward quantification of shotgun proteomic experiments. Despite the popularity of these approaches, few studies have been performed to assess their performance. We have therefore profiled the precision and the accuracy of three distinct relative label-free methods on both the protein and the proteome level. We derived our test data from two well-characterized publicly available quantitative data sets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号