首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5133篇
  免费   478篇
  国内免费   13篇
  5624篇
  2023年   24篇
  2022年   48篇
  2021年   95篇
  2020年   70篇
  2019年   84篇
  2018年   148篇
  2017年   126篇
  2016年   170篇
  2015年   241篇
  2014年   255篇
  2013年   328篇
  2012年   360篇
  2011年   327篇
  2010年   241篇
  2009年   192篇
  2008年   266篇
  2007年   234篇
  2006年   229篇
  2005年   203篇
  2004年   228篇
  2003年   161篇
  2002年   160篇
  2001年   120篇
  2000年   125篇
  1999年   103篇
  1998年   41篇
  1997年   33篇
  1996年   27篇
  1995年   35篇
  1994年   37篇
  1993年   30篇
  1992年   60篇
  1991年   56篇
  1990年   53篇
  1989年   45篇
  1988年   41篇
  1987年   33篇
  1986年   48篇
  1985年   35篇
  1984年   40篇
  1983年   29篇
  1979年   27篇
  1977年   27篇
  1976年   20篇
  1972年   24篇
  1970年   29篇
  1969年   31篇
  1968年   28篇
  1967年   22篇
  1965年   22篇
排序方式: 共有5624条查询结果,搜索用时 15 毫秒
991.
Control of chromosome replication involves a common set of regulators in eukaryotes, whereas bacteria with divided genomes use chromosome-specific regulators. How bacterial chromosomes might communicate for replication is not known. In Vibrio cholerae, which has two chromosomes (chrI and chrII), replication initiation is controlled by DnaA in chrI and by RctB in chrII. DnaA has binding sites at the chrI origin of replication as well as outside the origin. RctB likewise binds at the chrII origin and, as shown here, to external sites. The binding to the external sites in chrII inhibits chrII replication. A new kind of site was found in chrI that enhances chrII replication. Consistent with its enhancing activity, the chrI site increased RctB binding to those chrII origin sites that stimulate replication and decreased binding to other sites that inhibit replication. The differential effect on binding suggests that the new site remodels RctB. The chaperone-like activity of the site is supported by the finding that it could relieve the dependence of chrII replication on chaperone proteins DnaJ and DnaK. The presence of a site in chrI that specifically controls chrII replication suggests a mechanism for communication between the two chromosomes for replication.  相似文献   
992.
Adenosine levels increase in ischemic hearts and contribute to the modulation of that pathological environment. We previously showed that A2B adenosine receptors on mouse cardiac Sca1+CD31 mesenchymal stromal cells upregulate secretion of paracrine factors that may contribute to the improvement in cardiac recovery seen when these cells are transplanted in infarcted hearts. In this study, we tested the hypothesis that A2B receptor signaling regulates the transition of Sca1+CD31 cells, which occurs after myocardial injury, into a myofibroblast phenotype that promotes myocardial repair and remodeling. In vitro, TGFβ1 induced the expression of the myofibroblast marker α-smooth muscle actin (αSMA) and increased collagen I generation in Sca1+CD31 cells. Stimulation of A2B receptors attenuated TGFβ1-induced collagen I secretion but had no effect on αSMA expression. In vivo, myocardial infarction resulted in a rapid increase in the numbers of αSMA-positive cardiac stromal cells by day 5 followed by a gradual decline. Genetic deletion of A2B receptors had no effect on the initial accumulation of αSMA-expressing stromal cells but hastened their subsequent decline; the numbers of αSMA-positive cells including Sca1+CD31 cells remained significantly higher in wild type compared with A2B knockout hearts. Thus, our study revealed a significant contribution of cardiac Sca1+CD31 cells to the accumulation of αSMA-expressing cells after infarction and implicated A2B receptor signaling in regulation of myocardial repair and remodeling by delaying deactivation of these cells. It is plausible that this phenomenon may contribute to the beneficial effects of transplantation of these cells to the injured heart.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-014-9410-y) contains supplementary material, which is available to authorized users.  相似文献   
993.
This study aimed to evaluate whether functional variants in the ankyrin repeat and kinase domain‐containing 1 (ANKK1) gene and/or the dopamine receptor D2 (DRD2) gene modulate the subjective effects (reward or non‐reward response to a stimulus) produced by cocaine administration. Cocaine‐dependent participants (N = 47) were administered 40 mg of cocaine or placebo at time 0, and a subjective effects questionnaire (visual analog scale) was administered 15 min prior to cocaine administration, and at 5, 10, 15 and 20 min following administration. The influence of polymorphisms in the ANKK1 and DRD2 genes on subjective experience of cocaine in the laboratory was tested. Participants with a T allele of ANKK1 rs1800497 experienced greater subjective ‘high’ (P = 0.00006), ‘any drug effect’ (P = 0.0003) and ‘like’ (P = 0.0004) relative to the CC genotype group. Although the variant in the DRD2 gene was shown to be associated with subjective effects, linkage disequilibrium analysis revealed that this association was driven by the ANKK1 rs1800497 variant. A participant's ANKK1 genotype may identify individuals who are likely to experience greater positive subjective effects following cocaine exposure, including greater ‘high’ and ‘like’, and these individuals may have increased vulnerability to continue using cocaine or they may be at greater risk to relapse during periods of abstinence. However, these results are preliminary and replication is necessary to confirm these findings.  相似文献   
994.
The effects of solvent additive (1,8‐diiodooctane (DIO)) on the morphology, charge generation, transport, and recombination in solution‐processed small‐molecule solar cells are studied and these parameters are correlated with device performance. In the optimum nanoscale morphology, which is processed with 0.4% DIO, the phase separation is large enough to create a percolating pathway for carrier transport, yet still small enough to form large interfacial area for efficient charge separation. Complete phase separation in this film reduces the interfacial defects, which occurs without DIO, and hence suppresses the monomolecular recombination. Moreover, balanced charge transport and weak bimolecular recombination lead to a high fill factor (72%). On the other hand, an excess amount of DIO (0.8%) in the solvent results in the over‐aggregation of the donor phase, which disturbs the percolating pathway of the acceptor phase and reduces the electron mobility. The over‐aggregation of the donor phase also shrinks the interfacial area for charge separation and consequently reduces the photocurrent generation.  相似文献   
995.
A form of photoelectrode architecture suitable for inorganic semiconductor solar cells is reported. The developed architecture consists of hierarchically organized TiO2 nanostructures with several tens of nanometer‐sized particles that have a large surface area and open channels with several hundred‐nanometer‐gaps perpendicular to the substrate. These are tailored by controlling the kinetic energy of the ablated species during pulsed laser deposition (PLD). To fabricate the solar cells, CdS and CdSe inorganic sensitizers are assembled onto the architecture by successive ionic layer adsorption and reaction and polysulfide solution is used as an electrolyte with lead sulfide counter‐electrodes. The inorganic semiconductor solar cells using the developed architecture (PLD‐TiO2) show high energy conversion efficiencies of 5.57% compared to a conventional mesoporous TiO2 film(NP‐TiO2) (3.84%) with an optical mask at 1 sun of illumination. The improved cell performance of PLD‐TiO2 is attributed to greater light‐harvesting ability, which results in the enhancement of the Jsc value. PLD‐TiO2 absorbs more CdS/CdSe because of its larger surface area and excellent adhesion properties with fluorine‐doped tin oxide (FTO) substrates. Additionally, due to its unique channel‐shaped architecture, PLD‐TiO2 has a longer electron lifetime compared to NP‐TiO2.  相似文献   
996.
The use of cell walls to produce cellulosic ethanol from sugarcane bagasse is a new challenge. A better knowledge of proteins involved in cell wall remodelling is essential to improve the saccharification processes. Cell suspension cultures were used for this first cell wall proteomics study of sugarcane. Proteins extracted from cell walls were identified using an adapted protocol. They were extracted using 0.2 M CaCl2 and 2 M LiCl after purification of cell walls. The proteins were then identified by the innovative nanoACQUITY UPLC MS/MS technology and bioinformatics using the translated SUCEST EST cluster database of sugarcane. The experiments were reproduced three times. Since Sorghum bicolor is the closest plant with a fully sequenced genome, homologous proteins were searched for to complete the annotation of proteins, that is, prediction of subcellular localization and functional domains. Altogether, 69 different proteins predicted to be secreted were identified among 377 proteins. The reproducibility of the experiments is discussed. These proteins were distributed into eight functional classes. Oxidoreductases such as peroxidases were well represented, whereas glycoside hydrolases were scarce. This work provides information about the proteins that could be manipulated through genetic transformation, to increase second‐generation ethanol production.  相似文献   
997.
Bumblebee Bombus ignitus, which is indigenous to Korea, Japan, and China, has been recognized as a valuable pollinator for both crops and wild plants. Bombus ignitus has now become commercially important as a pollinator because of its use in the agricultural industry, particularly for greenhouse pollination. For long‐term management and effective conservation of B. ignitus, an understanding of the genetic structure of its naturally occurring populations is practically important. In this study, the genetic structure among the five populations of B. ignitus in South Korea was assessed using nine microsatellite loci. These markers showed high levels of genetic variability, with the number of alleles ranging from 6 to 22 (mean = 13.4) and the frequency of the most common allele ranging from 0.11 to 0.66. Only the Sabuk (SB) population showed a genetic signature of a recent bottleneck, which was further supported by the lowest level of allelic richness (AR) (mean AR = 3.944). Genetic differentiation was highly significant among all pairs of populations (P < 0.001) across the nine microsatellite markers, suggesting a lack of gene flow among those populations. Interestingly, FST (and RST and Dest) values were always greater for the Taebaek population than for the four remaining populations. The phylogenetic analysis showed evidence supporting our hypothesis that the Taebaek population is genetically more divergent than the other populations. Overall, our results suggest that the Korean populations of B. ignitus might have undergone geographic isolation and have become highly separated spatially from one another, thereby having a limited range of migration among their local habitats.  相似文献   
998.
Understanding how developmental systems evolve over time is a key question in stem cell and developmental biology research. However, due to hurdles of existing experimental techniques, our understanding of these systems as a whole remains partial and coarse. In recent years, we have been constructing in-silico models that synthesize experimental knowledge using software engineering tools. Our approach integrates known isolated mechanisms with simplified assumptions where the knowledge is limited. This has proven to be a powerful, yet underutilized, tool to analyze the developmental process. The models provide a means to study development in-silico by altering the model’s specifications, and thereby predict unforeseen phenomena to guide future experimental trials. To date, three organs from diverse evolutionary organisms have been modeled: the mouse pancreas, the C. elegans gonad, and partial rodent brain development. Analysis and execution of the models recapitulated the development of the organs, anticipated known experimental results and gave rise to novel testable predictions. Some of these results had already been validated experimentally. In this paper, I review our efforts in realistic in-silico modeling of stem cell research and developmental biology and discuss achievements and challenges. I envision that in the future, in-silico models as presented in this paper would become a common and useful technique for research in developmental biology and related research fields, particularly regenerative medicine, tissue engineering and cancer therapeutics.  相似文献   
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号