首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   9篇
  62篇
  2023年   1篇
  2021年   3篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   5篇
  2014年   2篇
  2013年   1篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2008年   1篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   4篇
  2001年   3篇
  1999年   1篇
  1987年   1篇
  1977年   1篇
  1976年   1篇
  1975年   3篇
  1974年   4篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
21.
22.
23.
This study aimed to evaluate the role of APOE polymorphisms (rs429358 and rs7412) in the risk of age-related macular degeneration in a sample of the Southeastern Brazilian population. Seven hundred and five unrelated individuals were analyzed, 334 with age-related macular degeneration (case group), and 371 without the disease (control group). In the case group, patients were further stratified according to disease phenotypes, divided into dry and wet age-related macular degeneration, and non-advanced and advanced age-related macular degeneration. APOE polymorphisms (rs429358 and rs7412) were evaluated through polymerase chain reaction and direct sequencing. In the comparison of cases vs. controls, none of the associations reached statistical significance, considering the Bonferroni-adjusted P-value, although there was a suggestive protection for the E3/E4 genotype (OR = 0.626; P-value = 0.037) and E4 carriers (OR = 0.6515; P-value = 0.047). Statistically significant protection for both the E3/E4 genotype and E4 carriers was observed in the comparisons: advanced age-related macular degeneration vs. controls (OR = 0.3665, P-value = 0.491 × 10−3 and OR = 0.4031, P-value = 0.814 × 10−3, respectively), advanced age-related macular degeneration vs. non-advanced age-related macular degeneration (OR = 0.2529, P-value = 0.659 × 10−4 and OR = 0.2692, P-value = 0.631 × 10−4, respectively). In the comparison of wet age-related macular degeneration vs. control, protection was statistically significant only for E3/E4 (OR = 0.4052, P-value = 0.001). None of the comparisons demonstrated any significant association for E2 genotypes or E2 carriers in age-related macular degeneration risk in this study. Findings suggest a protective role of the E4 haplotype in the APOE gene in the risk for advanced and wet forms of age-related macular degeneration, in a sample of the Brazilian population. To our knowledge, this is the first Brazilian study to show the association between APOE polymorphisms and age-related macular degeneration.  相似文献   
24.
In this study the enzymatic activity of Mycoplasma agalactiae MAG_5040, a magnesium-dependent nuclease homologue to the staphylococcal SNase was characterized and its antigenicity during natural infections was established. A UGA corrected version of MAG_5040, lacking the region encoding the signal peptide, was expressed in Escherichia coli as a GST fusion protein. Recombinant GST-MAG_5040 exhibits nuclease activity similar to typical sugar-nonspecific endo- and exonucleases, with DNA as the preferred substrate and optimal activity in the presence of 20 mM MgCl2 at temperatures ranging from 37 to 45°C. According to in silico analyses, the position of the gene encoding MAG_5040 is consistently located upstream an ABC transporter, in most sequenced mycoplasmas belonging to the Mycoplasma hominis group. In M. agalactiae, MAG_5040 is transcribed in a polycistronic RNA together with the ABC transporter components and with MAG_5030, which is predicted to be a sugar solute binding protein by 3D modeling and homology search. In a natural model of sheep and goats infection, anti-MAG_5040 antibodies were detected up to 9 months post infection. Taking into account its enzymatic activity, MAG_5040 could play a key role in Mycoplasma agalactiae survival into the host, contributing to host pathogenicity. The identification of MAG_5040 opens new perspectives for the development of suitable tools for the control of contagious agalactia in small ruminants.  相似文献   
25.
26.
A promoter-like mutation, ptsP160, has been identified which drastically reduces expression of the genes specifying two proteins, HPr and enzyme I, of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) in Salmonella typhimurium. This mutation lies between trzA, a gene specifying susceptibility to 1,2,4-triazole, and ptsH, the structural gene for HPr. It leads to a loss of active transport of those sugars that require the PTS for entry into the cell. Pseudorevertants of strains carrying this promoter-like mutation have additional lesions very closely linked to ptsP160 by transduction analysis and are noninducible for HPr and enzyme I above a basal level. Presumably, strains carrying ptsP160 are defective in the normal induction mechanism for HPr and enzyme I, and the pseudorevertants derived from them result from second-site initiation signals within or near this promoter-like element. The induction of HPr and enzyme I above their noninduced levels apparently is not required for transport of at least one PTS sugar, methyl alpha-d-glucopyranoside, since this sugar is taken up by the pseudorevertants at the same rate as by the wild type. The existence of a promoter-like element governing the coordinate inducibility of both HPr and enzyme I suggests that ptsH and ptsI constitute an operon. Wild-type levels of a sugar-specific PTS protein, factor III, are synthesized in response to the crr(+) gene in both a ptsP160 strain and its pseudorevertants; this suggests that the crr(+) gene has its own promoter distinct from ptsP.  相似文献   
27.
28.
29.
N-Acyl-beta-sultams are time-dependent, irreversible active site-directed inhibitors of Streptomyces R61 DD-peptidase. The rate of inactivation is first order with respect to beta-sultam concentration, and the second-order rate constants show a dependence on pH similar to that for the hydrolysis of a substrate. Inactivation is due to the formation of a stable 1:1 enzyme-inhibitor complex as a result of the active site serine being sulfonylated by the beta-sultam as shown by ESI-MS analysis and by X-ray crystallography. A striking feature of the sulfonyl enzyme is that the inhibitor is not bound to the oxyanion hole but interacts extensively with the "roof" of the active site where the Arg 285 is located.  相似文献   
30.
The NS3-NS4A serine protease of hepatitis C virus (HCV) mediates four specific cleavages of the viral polyprotein and its activity is considered essential for the biogenesis of the HCV replication machinery. Despite extensive biochemical and structural characterization, the analysis of natural variants of this enzyme has been limited by the lack of an efficient replication system for HCV in cultured cells. We have recently described the generation of chimeric HCV-Sindbis viruses whose propagation depends on the NS3-NS4A catalytic activity. NS3-NS4A gene sequences were fused to the gene coding for the Sindbis virus structural polyprotein in such a way that processing of the chimeric polyprotein, nucleocapsid assembly, and production of infectious viruses required NS3-NS4A-mediated proteolysis (G. Filocamo, L. Pacini, and G. Migliaccio, J. Virol. 71:1417–1427, 1997). Here we report the use of these chimeric viruses to select and characterize active variants of the NS3-NS4A protease. Our original chimeric viruses displayed a temperature-sensitive phenotype and formed lysis plaques much smaller than those formed by wild-type (wt) Sindbis virus. By serially passaging these chimeric viruses on BHK cells, we have selected virus variants which formed lysis plaques larger than those produced by their progenitors and produced NS3-NS4A proteins different in size and/or sequence from those of the original viruses. Characterization of the selected protease variants revealed that all of the mutated proteases still efficiently processed the chimeric polyprotein in infected cells and also cleaved an HCV substrate in vitro. One of the selected proteases was expressed in a bacterial system and showed a catalytic efficiency comparable to that of the wt recombinant protease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号