首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   7篇
  124篇
  2021年   2篇
  2020年   2篇
  2018年   4篇
  2017年   1篇
  2016年   6篇
  2015年   10篇
  2014年   6篇
  2013年   12篇
  2012年   22篇
  2011年   11篇
  2010年   9篇
  2009年   5篇
  2008年   5篇
  2007年   6篇
  2006年   4篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1986年   1篇
  1977年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有124条查询结果,搜索用时 0 毫秒
31.

Background

The aerial parts of Rumex acetosa L. have been used in traditional European medicine for inflammatory diseases of the mouth epithelial tissue. The following study aimed to investigate the influence of a proanthocyanidin-enriched extract from R. acetosa extract against the adhesion of Porphyromonas gingivalis (P. gingivalis), a pathogen strongly involved in chronic and aggressive periodontitis. A further goal was to define the bioactive lead structures responsible for a potential antiadhesive activity and to characterize the underlying molecular mechanisms of the antiadhesive effects.

Methodology

An extract of R. acetosa (RA1) with a defined mixture of flavan-3-ols, oligomeric proanthocyanidins and flavonoids, was used. Its impact on P. gingivalis adhesion to KB cells was studied by flow cytometry, confocal laser scanning microscopy and in situ adhesion assay using murine buccal tissue. RA1 and its compounds 1 to 15 were further investigated for additional effects on gingipain activity, hemagglutination and gene expression by RT-PCR.

Principal Findings

RA1 (5 to 15 μg/mL) reduced P. gingivalis adhesion in a dose-dependent manner to about 90%. Galloylated proanthocyanidins were confirmed to be responsible for this antiadhesive effect with epicatechin-3-O-gallate-(4β,8)-epicatechin-3’-O-gallate (syn. procyanidin B2-di-gallate) being the lead compound. Ungalloylated flavan-3-ols and oligomeric proanthocyanidins were inactive. RA1 and the galloylated proanthocyanidins strongly interact with the bacterial virulence factor Arg-gingipain, while the corresponding Lys-gingipain was hardly influenced. RA1 inhibited also hemagglutination. In silico docking studies indicated that epicatechin-3-O-gallate-(4β,8)-epicatechin-3’-O-gallate interacts with the active side of Arg-gingipain and hemaglutinin from P. gingivalis; the galloylation of the molecule seems to be responsible for fixation of the ligand to the protein. In conclusion, the proanthocyanidin-enriched extract RA1 and its main active constituent procyanidin B2-di-gallate protect cells from P. gingivalis infection by inhibiting bacterial adhesion to the host cell. RA1 and procyanidin B2-di-gallate appear to be promising candidates for future cytoprotective preparations for oral mouth care products.  相似文献   
32.
33.
Development in the central nervous system is highly dependent on the regulation of the switch from progenitor cell proliferation to differentiation, but the molecular and cellular events controlling this process remain poorly understood. Here, we report that ablation of Crb1 and Crb2 genes results in severe impairment of retinal function, abnormal lamination and thickening of the retina mimicking human Leber congenital amaurosis due to loss of CRB1 function. We show that the levels of CRB1 and CRB2 proteins are crucial for mouse retinal development, as they restrain the proliferation of retinal progenitor cells. The lack of these apical proteins results in altered cell cycle progression and increased number of mitotic cells leading to an increased number of late-born cell types such as rod photoreceptors, bipolar and Müller glia cells in postmitotic retinas. Loss of CRB1 and CRB2 in the retina results in dysregulation of target genes for the Notch1 and YAP/Hippo signaling pathways and increased levels of P120-catenin. Loss of CRB1 and CRB2 result in altered progenitor cell cycle distribution with a decrease in number of late progenitors in G1 and an increase in S and G2/M phase. These findings suggest that CRB1 and CRB2 suppress late progenitor pool expansion by regulating multiple proliferative signaling pathways.  相似文献   
34.
MOTIVATION: Primary immunodeficiency diseases (PIDs) are Mendelian conditions of high phenotypic complexity and low incidence. They usually manifest in toddlers and infants, although they can also occur much later in life. Information about PIDs is often widely scattered throughout the clinical as well as the research literature and hard to find for both generalists as well as experienced clinicians. Semantic Web technologies coupled to clinical information systems can go some way toward addressing this problem. Ontologies are a central component of such a system, containing and centralizing knowledge about primary immunodeficiencies in both a human- and computer-comprehensible form. The development of an ontology of PIDs is therefore a central step toward developing informatics tools, which can support the clinician in the diagnosis and treatment of these diseases. RESULTS: We present PIDO, the primary immunodeficiency disease ontology. PIDO characterizes PIDs in terms of the phenotypes commonly observed by clinicians during a diagnosis process. Phenotype terms in PIDO are formally defined using complex definitions based on qualities, functions, processes and structures. We provide mappings to biomedical reference ontologies to ensure interoperability with ontologies in other domains. Based on PIDO, we developed the PIDFinder, an ontology-driven software prototype that can facilitate clinical decision support. PIDO connects immunological knowledge across resources within a common framework and thereby enables translational research and the development of medical applications for the domain of immunology and primary immunodeficiency diseases.  相似文献   
35.
36.
The integrity of central and peripheral nervous system myelin is affected in numerous lipid metabolism disorders. This vulnerability was so far mostly attributed to the extraordinarily high level of lipid synthesis that is required for the formation of myelin, and to the relative autonomy in lipid synthesis of myelinating glial cells because of blood barriers shielding the nervous system from circulating lipids. Recent insights from analysis of inherited lipid disorders, especially those with prevailing lipid depletion and from mouse models with glia-specific disruption of lipid metabolism, shed new light on this issue. The particular lipid composition of myelin, the transport of lipid-associated myelin proteins, and the necessity for timely assembly of the myelin sheath all contribute to the observed vulnerability of myelin to perturbed lipid metabolism. Furthermore, the uptake of external lipids may also play a role in the formation of myelin membranes. In addition to an improved understanding of basic myelin biology, these data provide a foundation for future therapeutic interventions aiming at preserving glial cell integrity in metabolic disorders.  相似文献   
37.

Background

Neonates with airways colonized by Haemophilus influenzae, Streptococcus pneumoniae or Moraxella catarrhalis are at increased risk for recurrent wheeze which may resemble asthma early in life. It is not clear whether chronic colonization by these pathogens is causative for severe persistent wheeze in some preschool children and whether these children might benefit from antibiotic treatment. We assessed the relevance of bacterial colonization and chronic airway infection in preschool children with severe persistent wheezing and evaluated the outcome of long-time antibiotic treatment on the clinical course in such children.

Methodology/Principal Findings

Preschool children (n = 42) with severe persistent wheeze but no symptoms of acute pulmonary infection were investigated by bronchoscopy and bronchoalveolar lavage (BAL). Differential cell counts and microbiological and virological analyses were performed on BAL samples. Patients diagnosed with bacterial infection were treated with antibiotics for 2–16 weeks (n = 29). A modified ISAAC questionnaire was used for follow-up assessment of children at least 6 months after bronchoscopy. Of the 42 children with severe wheezing, 34 (81%) showed a neutrophilic inflammation and 20 (59%) of this subgroup had elevated bacterial counts (≥104 colony forming units per milliliter) suggesting infection. Haemophilus influenzae, Streptococcus pneumoniae and Moraxella catarrhalis were the most frequently isolated species. After treatment with appropriate antibiotics 92% of patients showed a marked improvement of symptoms upon follow-up examination.

Conclusions/Significance

Chronic bacterial infections are relevant in a subgroup of preschool children with persistent wheezing and such children benefit significantly from antibiotic therapy.  相似文献   
38.
ABSTRACT: In our study we aimed to identify rapidly reacting gravity-responsive mechanisms in mammalian cells in order to understand if and how altered gravity is translated into a cellular response. In a combination of experiments using "functional weightlessness" provided by 2D-clinostats and real microgravity provided by several parabolic flight campaigns and compared to in-flight-1g-controls, we identified rapid gravity-responsive reactions inside the cell cycle regulatory machinery of human T lymphocytes. In response to 2D clinorotation, we detected an enhanced expression of p21 Waf1/Cip1 protein within minutes, less cdc25C protein expression and enhanced Ser147-phosphorylation of cyclinB1 after CD3/CD28 stimulation. Additionally, during 2D clinorotation, Tyr-15-phosphorylation occurred later and was shorter than in the 1 g controls. In CD3/CD28-stimulated primary human T cells, mRNA expression of the cell cycle arrest protein p21 increased 4.1-fold after 20s real microgravity in primary CD4+ T cells and 2.9-fold in Jurkat T cells, compared to 1 g in-flight controls after CD3/CD28 stimulation. The histone acetyltransferase (HAT) inhibitor curcumin was able to abrogate microgravity-induced p21 mRNA expression, whereas expression was enhanced by a histone deacetylase (HDAC) inhibitor. Therefore, we suppose that cell cycle progression in human T lymphocytes requires Earth gravity and that the disturbed expression of cell cycle regulatory proteins could contribute to the breakdown of the human immune system in space.  相似文献   
39.
40.
During the last years the great importance of RNA for regulating gene expression in all organisms has become obvious. Consequently, several recent approaches aim to utilize the outstanding chemical properties of RNA to develop artificial RNA regulators for conditional gene expression systems. A combination of rational design, in vitro selection and in vivo screening systems has been used to create a versatile set of RNA based molecular switches. These tools rely on diverse mechanisms and exhibit activity in several organisms. In this review, we summarize recent developments in the application of engineered riboswitches for gene regulation in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号