首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25378篇
  免费   15548篇
  国内免费   2篇
  2023年   16篇
  2022年   87篇
  2021年   390篇
  2020年   2184篇
  2019年   3725篇
  2018年   3825篇
  2017年   4104篇
  2016年   4090篇
  2015年   3987篇
  2014年   3627篇
  2013年   4045篇
  2012年   1718篇
  2011年   1421篇
  2010年   3004篇
  2009年   1767篇
  2008年   640篇
  2007年   240篇
  2006年   224篇
  2005年   277篇
  2004年   258篇
  2003年   253篇
  2002年   246篇
  2001年   254篇
  2000年   194篇
  1999年   132篇
  1998年   10篇
  1997年   12篇
  1996年   9篇
  1995年   8篇
  1994年   7篇
  1992年   15篇
  1991年   10篇
  1990年   6篇
  1989年   9篇
  1988年   6篇
  1987年   8篇
  1985年   4篇
  1983年   6篇
  1982年   4篇
  1980年   6篇
  1979年   12篇
  1978年   7篇
  1976年   4篇
  1974年   7篇
  1973年   5篇
  1971年   8篇
  1970年   5篇
  1969年   4篇
  1968年   11篇
  1967年   4篇
排序方式: 共有10000条查询结果,搜索用时 718 毫秒
851.
The essentiality of vitamin D for normal growth and development has been recognized for over 80 years, and vitamin D fortification programs have been in place in the United States for more than 70 years. Despite the above, vitamin D deficiency continues to be a common finding in certain population groups. Vitamin D deficiency has been suggested as a potential risk factor for the development of preeclampsia, and vitamin D deficiency during infancy and early childhood is associated with an increased risk for numerous skeletal disorders, as well as immunological and vascular abnormalities. Vitamin D deficiency can occur through multiple mechanisms including the consumption of diets low in this vitamin and inadequate exposure to environmental ultraviolet B rays. The potential value of vitamin D supplementation in high‐risk pregnancies and during infancy and early childhood is discussed. Currently, there is vigorous debate concerning what constitutes appropriate vitamin D intakes during early development as exemplified by differing recommendations from the Institute of Medicine Dietary Reference Intake report and recent recommendations by the Endocrine Society. As is discussed, a major issue that needs to be resolved is what key biological endpoint should be used when making vitamin D recommendations for the pregnant woman and her offspring. Birth Defects Research (Part C) 99:24–44, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
852.
During growth and development, the skin expands to cover the growing skeleton and soft tissues by constantly responding to the intrinsic forces of underlying skeletal growth as well as to the extrinsic mechanical forces from body movements and external supports. Mechanical forces can be perceived by two types of skin receptors: (1) cellular mechanoreceptors/mechanosensors, such as the cytoskeleton, cell adhesion molecules and mechanosensitive (MS) ion channels, and (2) sensory nerve fibres that produce the somatic sensation of mechanical force. Skin disorders in which there is an abnormality of collagen [e.g. Ehlers–Danlos syndrome (EDS)] or elastic (e.g. cutis laxa) fibres or a malfunction of cutaneous nerve fibres (e.g. neurofibroma, leprosy and diabetes mellitus) are also characterized to some extent by deficiencies in mechanobiological processes. Recent studies have shown that mechanotransduction is crucial for skin development, especially hemidesmosome maturation, which implies that the pathogenesis of skin disorders such as bullous pemphigoid is related to skin mechanobiology. Similarly, autoimmune diseases, including scleroderma and mixed connective tissue disease, and pathological scarring in the form of keloids and hypertrophic scars would seem to be clearly associated with the mechanobiological dysfunction of the skin. Finally, skin ageing can also be considered as a degenerative process associated with mechanobiological dysfunction. Clinically, a therapeutic strategy involving mechanoreceptors or MS nociceptor inhibition or acceleration together with a reduction or augmentation in the relevant mechanical forces is likely to be successful. The development of novel approaches such as these will allow the treatment of a broad range of cutaneous diseases.  相似文献   
853.
Telocytes (TC), a cell population located in the connective tissue of many organs of humans and laboratory mammals, are characterized by a small cell body and extremely long and thin processes. Different TC subpopulations share unique ultrastructural features, but express different markers. In the gastrointestinal (GI) tract, cells with features of TC were seen to be CD34‐positive/c‐kit‐negative and several roles have been proposed for them. Other interstitial cell types with regulatory roles described in the gut are the c‐kit‐positive/CD34‐negative/platelet‐derived growth factor receptor α (PDGFRα)‐negative interstitial cells of Cajal (ICC) and the PDGFRα‐positive/c‐kit‐negative fibroblast‐like cells (FLC). As TC display the same features and locations of the PDGFRα‐positive cells, we investigated whether TC and PDGFRα‐positive cells could be the same cell type. PDGFRα/CD34, PDGFRα/c‐kit and CD34/c‐kit double immunolabelling was performed in full‐thickness specimens from human oesophagus, stomach and small and large intestines. All TC in the mucosa, submucosa and muscle coat were PDGFRα/CD34‐positive. TC formed a three‐dimensional network in the submucosa and in the interstitium between muscle layers, and an almost continuous layer at the submucosal borders of muscularis mucosae and circular muscle layer. Moreover, TC encircled muscle bundles, nerve structures, blood vessels, funds of gastric glands and intestinal crypts. Some TC were located within the muscle bundles, displaying the same location of ICC and running intermingled with them. ICC were c‐kit‐positive and CD34/PDGFRα‐negative. In conclusion, in the human GI tract the TC are PDGFRα‐positive and, therefore, might correspond to the FLC. We also hypothesize that in human gut, there are different TC subpopulations probably playing region‐specific roles.  相似文献   
854.
855.
856.
Nanoporous network polymer nanocomposites with tunable pore size for size‐dependent selective ion transport are successfully prepared via the surface‐induced cross‐linking polymerization of methyl methacrylate (MMA) and 1,6‐hexanediol diacrylate (HDDA) on the surfaces of nanocrystalline TiO2 particles. The morphologies of the porous network polymer layer and nanopores were investigated by transmission electron microscopy (TEM), field emission scanning electron microscopy (FE‐SEM), and Brunauer–Emmett–Teller (BET) experiments. The porous layer size‐selectively screened the ions that contacted the nanocrystalline TiO2 particles, as demonstrated by ion conductivity measurements, electrochemical impedance spectroscopy (EIS), and transient absorption spectroscopy (TAS).  相似文献   
857.
Simple bilayer solar cells, using commercially available cationic cyanine dyes as donors and evaporated C60 layer as an acceptor are prepared. Cyanine dyes with absorption maxima of 578, 615 and 697 nm having either perchlorate or hexafluorophosphate counter‐ions are evaluated. The perchlorate dye leads to cells with S‐shape current‐voltage curves; only the dyes with the hexafluorophosphate counter‐ions lead to efficient solar cells. When the wide bandgap dyes are employed, S‐shape current‐voltage curves are obtained when the conductive polymer PEDOT:PSS is used as hole transport layer. Substitution of PEDOT:PSS with MoO3 leads to cells with more rectangular current–voltage curves and high fill factors. Additionally, the cells using the MoO3 layer for hole extraction lead to high open circuit voltages of 0.9 V. In the case that a low bandgap hexafluorophosphate dye is used with the HOMO above that of the PEDOT:PSS the cell performance is independent on the type of hole transport layer employed. Using this approach, bilayer solar cells are obtained with power efficiencies ranging from 1.8 to 2.9% depending on the particular dye employed. These are impressive numbers for bilayer solar cell that are partially solution processed in ambient conditions.  相似文献   
858.
859.
The catalyst layer of the cathode is arguably the most critical component of low‐temperature fuel cells and carbon dioxide (CO2) electrolysis cells because their performance is typically limited by slow oxygen (O2) and CO2 reduction kinetics. While significant efforts have focused on developing cathode catalysts with improved activity and stability, fewer efforts have focused on engineering the catalyst layer structure to maximize catalyst utilization and overall electrode and system performance. Here, we study the performance of cathodes for O2 reduction and CO2 reduction as a function of three common catalyst layer preparation methods: hand‐painting, air‐brushing, and screen‐printing. We employed ex‐situ X‐ray micro‐computed tomography (MicroCT) to visualize the catalyst layer structure and established data processing procedures to quantify catalyst uniformity. By coupling structural analysis with in‐situ electrochemical characterization, we directly correlate variation in catalyst layer morphology to electrode performance. MicroCT and SEM analyses indicate that, as expected, more uniform catalyst distribution and less particle agglomeration, lead to better performance. Most importantly, the analyses reported here allow for the observed differences over a large geometric volume as a function of preparation methods to be quantified and explained for the first time. Depositing catalyst layers via a fully‐automated air‐brushing method led to a 56% improvement in fuel cell performance and a significant reduction in electrode‐to‐electrode variability. Furthermore, air‐brushing catalyst layers for CO2 reduction led to a 3‐fold increase in partial CO current density and enhanced product selectivity (94% CO) at similar cathode potential but a 10‐fold decrease in catalyst loading as compared to previous reports.  相似文献   
860.
Remarkable improvements in the electrochemical performance of Si materials for Li‐ion batteries have been recently achieved, but the inherent volume change of Si still induces electrode expansion and external cell deformation. Here, the void structure in Si‐encapsulating hollow carbons is optimized in order to minimize the volume expansion of Si‐based anodes and improve electrochemical performance. When compared to chemical etching, the hollow structure is achieved via electroless etching is more advanced due to the improved electrical contact between carbon and Si. Despite the very thick electrodes (30 ~ 40 μm), this results in better cycle and rate performances including little capacity fading over 50 cycles and 1100 mA h g?1 at 2C rate. Also, an in situ dilatometer technique is used to perform a comprehensive study of electrode thickness change, and Si‐encapsulating hollow carbon mitigates the volume change of electrodes by adoption of void space, resulting in a small volume increase of 18% after full lithiation corresponding with a reversible capacity of about 2000 mA h g?1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号