首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   3篇
  2021年   1篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2012年   7篇
  2011年   9篇
  2010年   4篇
  2009年   2篇
  2008年   1篇
  2007年   5篇
  2006年   2篇
  2003年   1篇
  2002年   3篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
排序方式: 共有65条查询结果,搜索用时 31 毫秒
41.
Several groups of structurally-related compounds, comprised of either five or six-membered ring structures with attached lipophilic carbon chains and in some cases possessing halogen atoms, have been isolated from various marine algae and filamentous cyanobacteria. The related compounds considered in the present work include the coibacins, laurenciones, honaucins, malyngamides and the tumonoic acids. Members of all of these compound families were assayed and found to inhibit the production of nitric oxide in lipopolysaccharides-stimulated macrophages, indicating their anti-inflammatory potential. In addition, several of these same marine natural products were found to inhibit quorum sensing mediated phenotypes in Vibrio harveyi BB120 and/or Escherichia coli JB525. The mechanism and evolutionary significance for inhibition of these cellular processes in prokaryotic and eukaryotic systems are speculated on and discussed.  相似文献   
42.
43.
Benthic marine cyanobacteria are known for their prolific biosynthetic capacities to produce structurally diverse secondary metabolites with biomedical application and their ability to form cyanobacterial harmful algal blooms. In an effort to provide taxonomic clarity to better guide future natural product drug discovery investigations and harmful algal bloom monitoring, this study investigated the taxonomy of tropical and subtropical natural product-producing marine cyanobacteria on the basis of their evolutionary relatedness. Our phylogenetic inferences of marine cyanobacterial strains responsible for over 100 bioactive secondary metabolites revealed an uneven taxonomic distribution, with a few groups being responsible for the vast majority of these molecules. Our data also suggest a high degree of novel biodiversity among natural product-producing strains that was previously overlooked by traditional morphology-based taxonomic approaches. This unrecognized biodiversity is primarily due to a lack of proper classification systems since the taxonomy of tropical and subtropical, benthic marine cyanobacteria has only recently been analyzed by phylogenetic methods. This evolutionary study provides a framework for a more robust classification system to better understand the taxonomy of tropical and subtropical marine cyanobacteria and the distribution of natural products in marine cyanobacteria.  相似文献   
44.
Direct observation of halogenated natural products produced by different strains of marine cyanobacteria was accomplished by electrospray ionization and matrix assisted laser desorption ionization and gas phase separation via ion mobility mass spectrometry of extracts as well as intact organisms.  相似文献   
45.
Aquatic Ecology - Cyanobacteria have multifaceted ecological roles on coral reefs. Moorena bouillonii, a chemically rich filamentous cyanobacterium, has been characterized as a pathogenic organism...  相似文献   
46.
Marine cyanobacteria are prolific producers of bioactive secondary metabolites responsible for harmful algal blooms as well as rich sources of promising biomedical lead compounds. The current study focused on obtaining a clearer understanding of the remarkable chemical richness of the cyanobacterial genus Lyngbya. Specimens of Lyngbya from various environmental habitats around Curaçao were analysed for their capacity to produce secondary metabolites by genetic screening of their biosynthetic pathways. The presence of biosynthetic pathways was compared with the production of corresponding metabolites by LC‐ESI‐MS2 and MALDI‐TOF‐MS. The comparison of biosynthetic capacity and actual metabolite production revealed no evidence of genetic silencing in response to environmental conditions. On a cellular level, the metabolic origin of the detected metabolites was pinpointed to the cyanobacteria, rather than the sheath‐associated heterotrophic bacteria, by MALDI‐TOF‐MS and multiple displacement amplification of single cells. Finally, the traditional morphology‐based taxonomic identifications of these Lyngbya populations were combined with their phylogenetic relationships. As a result, polyphyly of morphologically similar cyanobacteria was identified as the major explanation for the perceived chemical richness of the genus Lyngbya, a result which further underscores the need to revise the taxonomy of this group of biomedically important cyanobacteria.  相似文献   
47.
Five separate collections of the tropical seaweed Stypopodium zonale were analysed for ten secondary metabolites using a combination of high performance liquid chromatography and proton nuclear magnetic resonance spectrometry. Shallow water populations from the Caribbean were found to possess similar metabolite profiles from year to year and from widely diverse locations. Stypopodium zonale from the South Pacific (Palau) contained similar structure types; however, the profile was qualitatively and quantitatively dissimilar to the Caribbean algae. A deep water Caribbean form of S. zonale was found to contain two metabolites, epitaondiol and 6a-desmethyl-6-acetylatomaric acid, not observed in the other extracts. This latter population is morphologically and anatomically distinct from the other S. zonale Caribbean populations.  相似文献   
48.
The potent mammalian immunohormone, 12-(S)-hydroxy-5,8,10,14-icosatetraenoic acid (12-(S)-HETE), is a 12-lipoxygenase metabolite of arachidonic acid that is widely distributed in animal tissues. In humans, it is produced and secreted by platelet cells and elicits both chemotactic and degranulatory responses in target neutrophils. As widely as 12-lipoxygenase activity and one of its major products, 12-(S)-HETE, have been found in animal tissues, it has never been found in plants. Herein, we report the first isolation of the 12-lipoxygenase product, 12-(S)-HETE, from a plant, the tropical marine alga Platysiphonia miniata (C. Agardh) B?rgesen.  相似文献   
49.
2-(1′-Oxo-dodeca-5′, 8′, 11′, 14′, 17′(all Z)-pentaenyl)-5-methoxy-1, 3-dihydroxybenzene, 2- (1′-oxo-dodeca-5′, 8′, 11′, 14′, 17′(all Z)-pentaenyl)-1, 3, 5-trihydroxybenzene, 2-(17′-hydroxy-1′-oxo-dodeca-5′, 8′, 11′, 14′(all Z)-tetraenyl)-1, 3, 5-trihydroxybenzene and 2-(1′oxo-hexadecyl)-1, 3, 5-trihydroxybenzene have been isolated from the related brown algae Zonaria farlowii, Z diesingiana and Lobophora papenfussii. The structures of these new metabolites are based on extensive spectral analyses and comparisons with model compounds. The isolation of (+)-7, 8-dimethyltocol, from L. papenfussii, is also reported.  相似文献   
50.
Bacteria of the genus Frankia are mycelium-forming actinomycetes that are found as nitrogen-fixing facultative symbionts of actinorhizal plants. Although soil-dwelling actinomycetes are well-known producers of bioactive compounds, the genus Frankia has largely gone uninvestigated for this potential. Bioinformatic analysis of the genome sequences of Frankia strains ACN14a, CcI3, and EAN1pec revealed an unexpected number of secondary metabolic biosynthesis gene clusters. Our analysis led to the identification of at least 65 biosynthetic gene clusters, the vast majority of which appear to be unique and for which products have not been observed or characterized. More than 25 secondary metabolite structures or structure fragments were predicted, and these are expected to include cyclic peptides, siderophores, pigments, signaling molecules, and specialized lipids. Outside the hopanoid gene locus, no cluster could be convincingly demonstrated to be responsible for the few secondary metabolites previously isolated from other Frankia strains. Few clusters were shared among the three species, demonstrating species-specific biosynthetic diversity. Proteomic analysis of Frankia sp. strains CcI3 and EAN1pec showed that significant and diverse secondary metabolic activity was expressed in laboratory cultures. In addition, several prominent signals in the mass range of peptide natural products were observed in Frankia sp. CcI3 by intact-cell matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS). This work supports the value of bioinformatic investigation in natural products biosynthesis using genomic information and presents a clear roadmap for natural products discovery in the Frankia genus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号