首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   355篇
  免费   20篇
  2016年   8篇
  2015年   8篇
  2014年   7篇
  2013年   11篇
  2012年   13篇
  2011年   11篇
  2010年   10篇
  2009年   9篇
  2008年   10篇
  2007年   10篇
  2006年   10篇
  2005年   11篇
  2004年   11篇
  2003年   7篇
  2002年   11篇
  1997年   4篇
  1996年   4篇
  1995年   7篇
  1994年   4篇
  1993年   5篇
  1992年   4篇
  1988年   5篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1982年   8篇
  1981年   5篇
  1979年   6篇
  1978年   8篇
  1977年   6篇
  1976年   3篇
  1975年   4篇
  1974年   9篇
  1973年   4篇
  1972年   5篇
  1971年   3篇
  1969年   3篇
  1968年   3篇
  1966年   4篇
  1965年   4篇
  1961年   4篇
  1955年   4篇
  1954年   3篇
  1951年   5篇
  1950年   10篇
  1949年   5篇
  1947年   3篇
  1939年   3篇
  1937年   7篇
  1936年   5篇
排序方式: 共有375条查询结果,搜索用时 31 毫秒
171.
A PCR-based genomic scan has been undertaken to estimate the extent and ratio of maternally versus paternally methylated DNA regions in endosperm, embryo, and leaf of Zea mays (maize). Analysis of several inbred lines and their reciprocal crosses identified a large number of conserved, differentially methylated DNA regions (DMRs) that were specific to the endosperm. DMRs were hypomethylated at specific methylation-sensitive restriction sites upon maternal transmission, whereas upon paternal transmission, the methylation levels were similar to those observed in embryo and leaf. Maternal hypomethylation was extensive and offers a likely explanation for the 13% reduction in methyl-cytosine content of the endosperm compared with leaf tissue. DMRs showed identity to expressed genic regions, were observed early after fertilization, and maintained at a later stage of endosperm development. The implications of extensive maternal hypomethylation with respect to endosperm development and epigenetic reprogramming will be discussed.  相似文献   
172.
On the role of liver X receptors in lipid accumulation in adipocytes   总被引:14,自引:0,他引:14  
The pivotal role of liver X receptors (LXRs) in the metabolic conversion of cholesterol to bile acids in mice is well established. More recently, the LXRalpha promoter has been shown to be under tight regulation by peroxisome proliferator-activated receptors (PPARs), implying a role for LXRalpha in mediating the interplay between cholesterol and fatty acid metabolism. We have studied the role of LXR in fat cells and demonstrate that LXR is regulated during adipogenesis and augments fat accumulation in mature adipocytes. LXRalpha expression in murine 3T3-L1 adipocytes as well as in human adipocytes was up-regulated in response to PPARgamma agonists. Administration of a PPARgamma agonist to obese Zucker rats also led to increased LXRalpha mRNA expression in adipose tissue in vivo. LXR agonist treatment of differentiating adipocytes led to increased lipid accumulation. An increase of the expression of the LXR target genes, sterol regulatory binding protein-1 and fatty acid synthase, was observed both in vivo and in vitro after treatment with LXR agonists for 24 h. Finally, we demonstrate that fat depots in LXRalpha/beta-deficient mice are smaller than in age-matched wild-type littermates. These findings imply a role for LXR in controlling lipid storage capacity in mature adipocytes and point to an intriguing physiological interplay between LXR and PPARgamma in controlling pathways in lipid handling.  相似文献   
173.
174.
Sulfate assimilation provides reduced sulfur for synthesis of the amino acids cysteine and methionine and for a range of other metabolites. Sulfate has to be activated prior to reduction by adenylation to adenosine 5'-phosphosulfate (APS). In plants, algae, and many bacteria, this compound is reduced to sulfite by APS reductase (APR); in fungi and some cyanobacteria and gamma-proteobacteria, a second activation step, phosphorylation to 3'-phosphoadenosine 5'-phosphosulfate (PAPS), is necessary before reduction to sulfite by PAPS reductase (PAPR). We found previously that the moss Physcomitrella patens is unique among these organisms in possessing orthologs of both APR and PAPR genes (Koprivova, A., Meyer, A. J., Schween, G., Herschbach, C., Reski, R., and Kopriva, S. (2002) J. Biol. Chem. 277, 32195-32201). To assess the function of the two enzymes, we compared their biochemical properties by analysis of purified recombinant proteins. APR from Physcomitrella is very similar to the well characterized APRs from seed plants. On the other hand, we found that the putative PAPR preferentially reduces APS. Sequence analysis, analysis of UV-visible spectra, and determination of iron revealed that this new APR, named PpAPR-B, does not contain the FeS cluster, which was previously believed to determine the substrate specificity of the otherwise relatively similar enzymes. The lack of the FeS cluster in PpAPR-B catalysis is connected with a lower turnover rate but higher stability of the protein. These findings show that APS reduction without the FeS cluster is possible and that plant sulfate assimilation is predominantly dependent on reduction of APS.  相似文献   
175.
The mammalian target of rapamycin complex 1 (mTORC1) is a central regulator of physiological adaptations in response to changes in nutrient supply. Major downstream targets of mTORC1 signalling are the mRNA translation regulators p70 ribosomal protein S6 kinase 1 (S6K1p70) and the 4E‐binding proteins (4E‐BPs). However, little is known about vertebrate mRNAs that are specifically controlled by mTORC1 signalling and are engaged in regulating mTORC1‐associated physiology. Here, we show that translation of the CCAAT/enhancer binding protein beta (C/EBPβ) mRNA into the C/EBPβ‐LIP isoform is suppressed in response to mTORC1 inhibition either through pharmacological treatment or through calorie restriction. Our data indicate that the function of 4E‐BPs is required for suppression of LIP. Intriguingly, mice lacking the cis‐regulatory upstream open reading frame (uORF) in the C/EBPβ‐mRNA, which is required for mTORC1‐stimulated translation into C/EBPβ‐LIP, display an improved metabolic phenotype with features also found under calorie restriction. Thus, our data suggest that translational adjustment of C/EBPβ‐isoform expression is one of the key processes that direct metabolic adaptation in response to changes in mTORC1 activity.  相似文献   
176.
177.
Nectar composition and concentration were analyzed for 75 samples of 70 species of Acanthaceae representing all major intrafamiliar groups. Analyses of variance were conducted to test for significant differences between pollination syndromes and between taxonomical or phylogenetic groups (genera). The available data indicate that the characteristics of nectar in Acanthaceae are predominantly determined by adaptation to needs of the pollinators rather than by phylogenetic constraints.  相似文献   
178.
The skin of macroscopically distinct regions (hairy skin, vibrissal fields, buccal ridge, and rhinarium) of the head of the blind mole-rat, Spalax ehrenbergi, was studied by routine histological methods. Few guard and several soft vellus hairs are organized into tufts that grow from a group of hair follicles localized in an invaginated compound cavity. We suggest that this hair arrangement may be a burrowing adaptation to match frictional resistance. The follicles and the compound cavity possess either well developed complex striated musculature or errector pili muscles. There are no structural specializations (sweat glands, glomus bodies) to enhance thermo-regulatory (heat dissipative) capacities in the hairy skin of the head. Vibrissae penetrate the epidermal surface as single hairs. They are microscopically normally developed are arranged in vibrissal fields according to a basal mammalian pattern. Most of them are, however, relatively short and inconspicuous. The mystical vibrissal field is horizontally divided by a prominent buccal ridge which is probably involved in bulldozing. The hairs in the ridge leave the compound cavity singularly. The follicles of guard hairs and bristles are equipped with well developed pilo-Ruffini complexes indicating that the buccal ridge may serve also as a tactile organ. The glabrous skin of the rhinarium has a highly interdigitated dermal-epidermal interface. The dermal papillae possess simple lamellated and/or simple Meissner's corpuscles and few Merkel cell-axon-complexes indicating that the skin of the rhinarium may be particularly sensitive to perception of vibrations. J Morphol 233:53–66, 1997. © 1997 Wiley-Liss, Inc.  相似文献   
179.
Hydroxyurea (HU) treatment of early first instar larvae in Drosophila was previously shown to ablate a single dividing lateral neuroblast (LNb) in the brain. Early larval HU application to P[GAL4] strains that label specific neuron types enabled us to identify the origins of the two major classes of interneurons in the olfactory system. HU treatment resulted in the loss of antennal lobe local interneurons and of a subset of relay interneurons (RI), elements usually projecting to the calyx and the lateral protocerebrum (LPR). Other RI were resistant to HU and still projected to the LPR. However, they formed no collaterals in the calyx region (which was also ablated), suggesting that their survival does not depend on targets in the calyx. Hence, the ablated interneurons were derived from the LNb, whereas the HU-resistant elements originated from neuroblasts which begin to divide later in larval life. Developmental GAL4 expression patterns suggested that differentiated RI are present at the larval stage already and may be retained through metamorphosis. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 443–456, 1997  相似文献   
180.
High-density lipoprotein (HDL) apolipoproteins remove excess cholesterol from cells by an active transport pathway that may protect against atherosclerosis. Here we show that treatment of cholesterol-loaded human skin fibroblasts with phospholipid transfer protein (PLTP) increased HDL binding to cells and enhanced cholesterol and phospholipid efflux by this pathway. PLTP did not stimulate lipid efflux in the presence of albumin, purified apolipoprotein A-I, and phospholipid vesicles, suggesting specificity for HDL particles. PLTP restored the lipid efflux activity of mildly trypsinized HDL, presumably by regenerating active apolipoproteins. PLTP-stimulated lipid efflux was absent in Tangier disease fibroblasts, induced by cholesterol loading, and inhibited by brefeldin A treatment, indicating selectivity for the apolipoprotein-mediated lipid removal pathway. The lipid efflux-stimulating effect of PLTP was not attributable to generation of preβ HDL particles in solution but instead required cellular interactions. These interactions increased cholesterol efflux to minor HDL particles with electrophoretic mobility between α and preβ. These findings suggest that PLTP promotes cell-surface binding and remodeling of HDL so as to improve its ability to remove cholesterol and phospholipids by the apolipoprotein-mediated pathway, a process that may play an important role in enhancing flux of excess cholesterol from tissues and retarding atherogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号