首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   1篇
  67篇
  2017年   1篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   6篇
  2007年   6篇
  2006年   4篇
  2005年   4篇
  2004年   5篇
  2003年   3篇
  2002年   1篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1983年   2篇
  1981年   1篇
排序方式: 共有67条查询结果,搜索用时 0 毫秒
11.
12.
13.
The prevalence of asthma has taken on pandemic proportions. Since this disease predisposes patients to severe acute airway constriction, novel mechanisms capable of promoting airway smooth muscle relaxation would be clinically valuable. We have recently demonstrated that activation of endogenous airway smooth muscle GABA(A) receptors potentiates β-adrenoceptor-mediated relaxation, and molecular analysis of airway smooth muscle reveals that the α-subunit component of these GABA(A) receptors is limited to the α(4)- and α(5)-subunits. We questioned whether ligands with selective affinity for these GABA(A) receptors could promote relaxation of airway smooth muscle. RT-PCR analysis of GABA(A) receptor subunits was performed on RNA isolated by laser capture microdissection from human and guinea pig airway smooth muscle. Membrane potential and chloride-mediated current were measured in response to GABA(A) subunit-selective agonists in cultured human airway smooth muscle cells. Functional relaxation of precontracted guinea pig tracheal rings was assessed in the absence and presence of the α(4)-subunit-selective GABA(A) receptor agonists: gaboxadol, taurine, and a novel 8-methoxy imidazobenzodiazepine (CM-D-45). Only messenger RNA encoding the α(4)- and α(5)-GABA(A) receptor subunits was identified in RNA isolated by laser capture dissection from guinea pig and human airway smooth muscle tissues. Activation of airway smooth muscle GABA(A) receptors with agonists selective for these subunits resulted in appropriate membrane potential changes and chloride currents and promoted relaxation of airway smooth muscle. In conclusion, selective subunit targeting of endogenous airway smooth muscle-specific GABA(A) receptors may represent a novel therapeutic option for patients in severe bronchospasm.  相似文献   
14.

Background  

In biomedical sciences, ex vivo angiography is a practical mean to elucidate vascular structures three-dimensionally with simultaneous estimation of intravascular volume. The objectives of this study were to develop a magnetic resonance (MR) method for ex vivo angiography and to compare the findings with computed tomography (CT). To demonstrate the usefulness of this method, examples are provided from four different tissues and species: the human placenta, a rice field eel, a porcine heart and a turtle.  相似文献   
15.
Interstitial cells of Cajal in the deep muscular plexus (ICC-DMP) of the small intestine express excitatory neurotransmitter receptors. We tested whether ICC-DMP are functionally innervated by cholinergic neurons in the murine intestine. Muscles were stimulated by intrinsic nerves and ACh and processed for immunohistochemistry to determine these effects on PKC-epsilon activation. Under control conditions, PKC-epsilon-like immunoreactivy (PKC-epsilon-LI) was only observed in myenteric neurons within the tunica muscularis. Electrical field stimulation or ACh caused translocation of neural PKC-epsilon-LI from the cytosol to a peripheral compartment. After stimulation, PKC-epsilon-LI was found in spindle-shaped cells in the DMP. These cells were identified as ICC-DMP by Kit-LI and vimentin-LI. PKC-epsilon-LI in ICC-DMP and translocation of PKC epsilon-LI in neurons were blocked by tetrodotoxin or atropine, suggesting that these responses were due to activation of muscarinic receptors. Western blots also confirmed translocation of PKC-epsilon-LI. In conclusion, PKC-epsilon translocation is linked to muscarinic receptor activation in ICC-DMP and a subpopulation of myenteric neurons. These studies demonstrate that ICC-DMP are functionally innervated by excitatory motoneurons.  相似文献   
16.
Growth and differentiation-related pathways are much more active in immature than in mature, fully differentiated smooth muscle. Because mitogen-activated protein kinases (MAPK) are intimately involved with growth and differentiation, and the extracellular signal-regulated kinase (ERK) subfamily of MAPKs are involved in some contractile responses, the present studies examined the hypothesis that ERKs play an important and age-dependent role in smooth muscle contraction. The MAPK inhibitors PD098059 and UO126 both inhibited serotonin (5-HT) concentration-response relations more effectively in carotid arteries from term fetal lambs, than in corresponding arteries from mature non-pregnant adult sheep. This inhibition involved significant decreases in both the pD2 (adult: 2-fold; fetus: 4- to 15-fold) and the maximum efficacy (adult: 15-19%; fetus: 34-39%) of 5-HT. Accompanying this age-dependent effect on contraction, quantitative Western blot assays revealed that ERK1 and ERK2 abundances were 39% and 164% greater, respectively, in fetal than in adult carotid arteries. The abundance of the putative ERK target, caldesmon, however, was about 7-fold greater in adult than in fetal arteries. Together, the present results support the view that ERK abundance and activity is upregulated in fetal relative to adult arteries, and that one consequence of this upregulation is that the contribution of ERKs to contraction, at least that initiated by 5-HT2a receptors, is greater in fetal than adult carotid arteries. Whereas the phosphorylation mechanisms through which ERKs augment contraction remain uncertain and controversial, the present results suggest that emphasis should be shifted away from caldesmon and toward other critical contractile proteins, and how these proteins may contribute differently to development of agonist-induced contractile force in immature and mature arteries.  相似文献   
17.
The nucleotide sequence of the red-sensitive visual pigment gene, R007Af, in the fish Astyanax fasciatus, from the initiation codon to the stop codon of this gene, including introns, is 1,592 bp, making it the shortest visual pigment gene known in vertebrates. Analysis of this and other homologous sequence data suggests that vertebrates initially had two duplicate genes and that each ancestor of Astyanax, human, and chicken independently duplicated the gene in the process of developing their red-green color vision. Furthermore, many extant red-green colorblind organisms may be explained simply by the failure of achieving very specific nucleotide substitutions at the three codon positions 180, 277, and 285, rather than by the lack of duplicate loci.   相似文献   
18.
In a previous paper (Yang et al., Biophys. J. 75:641-645, 1998), we showed a simple, efficient method of recording the diffraction patterns of supramolecular peptide assemblies in membranes where the samples were prepared in the form of oriented multilayers. Here we develop a method of analysis based on the diffraction theory of two-dimensional liquids. Gramicidin was used as a prototype model because its pore structure in membrane in known. At full hydration, the diffraction patterns of alamethicin and magainin are similar to gramicidin except in the scale of q (the momentum transfer of scattering), clearly indicating that both alamethicin and magainin form pores in membranes but of different sizes. When the hydration of the multilayer samples was decreased while the bilayers were still fluid, the in-plane positions of the membrane pores became correlated from one bilayer to the next. We believe that this is a new manifestation of the hydration force. The effect is most prominent in magainin patterns, which are used to demonstrate the method of analysis. When magainin samples were further dehydrated or cooled, the liquid-like diffraction turned into crystal-like patterns. This discovery points to the possibility of investigating the supramolecular structures with high-order diffraction.  相似文献   
19.
Stimulation of muscarinic M3 and M2 receptors on gastrointestinal smooth muscle elicits contraction via activation of G proteins that are coupled to a diverse set of downstream signaling pathways and effector proteins. Many studies suggest a canonical excitation-contraction coupling pathway that includes activation of phospholipases, production of inositol 1,4,5-trisphosphate and diacylglycerol, release of calcium from the sarcoplasmic reticulum, activation of L-type calcium channels, and activation of nonselective cation channels. These events lead to elevated intracellular calcium concentration, which activates myosin light chain kinase to phosphorylate and activate myosin II thus causing contraction. In addition, muscarinic receptors are coupled to signaling pathways that modulate the effect of activator calcium. The Rho/Rho kinase pathway inhibits myosin light chain phosphatase, one of the key steps in sensitization of the contractile proteins to calcium. Phosphatidylinositol 3-kinases and Src family tyrosine kinases are also activated by muscarinic agonists. Src family tyrosine kinases regulate L-type calcium and nonselective cation channels. Src activation also leads to activation of ERK and p38 MAPKs. ERK MAPKs phosphorylate caldesmon, an actin filament binding protein. P38 MAPKs activate phospholipases and MAPKAP kinase 2/3, which phosphorylate HSP27. HSP27 may regulate cross-bridge function, actin filament formation, and actin filament attachment to the cell membrane. In addition to the well-known role of M3 muscarinic receptors to regulate myoplasmic calcium levels, the integrated effect of muscarinic activation probably also includes signaling pathways that modulate phospholipases, cyclic nucleotides, contractile protein function, and cytoskeletal protein function.  相似文献   
20.
The present study tests the hypothesis that age-related changes in patterns of agonist-induced myofilament Ca(2+) sensitization involve corresponding differences in the relative contributions of thick- and thin-filament regulation to overall myofilament Ca(2+) sensitivity. Posterior communicating cerebral arteries from term fetal and nonpregnant adult sheep were used in measurements of cytosolic Ca(2+), myosin light chain (MLC) phosphorylation, and contractile tensions induced by varying concentrations of K(+) or serotonin [5-hydroxytryptamine (5-HT)]. The results were used to assess the relative contributions of the relationships between cytosolic Ca(2+) and MLC phosphorylation (thick-filament reactivity), along with the relationships between MLC phosphorylation and contractile tension (thin-filament reactivity), to overall myofilament Ca(2+) sensitivity. For K(+)-induced contractions, both fetal and adult arteries exhibited similar basal myofilament Ca(2+) sensitivity. Despite this similarity, thick-filament reactivity was greater in fetal arteries, whereas thin-filament reactivity was greater in adult arteries. In contrast, 5-HT-induced contractions exhibited increased myofilament Ca(2+) sensitivity compared with K(+)-induced contractions for both fetal and adult cerebral arteries, and the magnitude of this effect was greater in fetal compared with adult arteries. When interpreted together with our previous studies of 5-HT-induced myofilament Ca(2+) sensitization, we attributed the present effects to agonist enhancement of thick-filament reactivity in fetal arteries mediated by G protein receptor activation of a PKC-independent but RhoA-dependent pathway. In adult arteries, agonist stimulation enhanced thin-filament reactivity was also probably mediated through G protein-coupled activation of RhoA-dependent and PKC-independent mechanisms. Overall, the present data demonstrate that agonist-enhanced myofilament Ca(2+) sensitivity can be partitioned into separate thick- and thin-filament effects, the magnitudes of which are different between fetal and adult cerebral arteries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号