首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   24篇
  国内免费   1篇
  189篇
  2021年   2篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   8篇
  2013年   9篇
  2012年   10篇
  2011年   5篇
  2010年   5篇
  2009年   7篇
  2008年   6篇
  2007年   13篇
  2006年   12篇
  2005年   10篇
  2004年   7篇
  2003年   2篇
  2002年   4篇
  2001年   5篇
  2000年   3篇
  1999年   7篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1990年   3篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1979年   1篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1961年   1篇
  1951年   1篇
  1942年   1篇
  1932年   1篇
  1927年   1篇
  1919年   2篇
  1908年   1篇
排序方式: 共有189条查询结果,搜索用时 15 毫秒
101.
A combination of pulse‐chase experiments and 2‐D PAGE revealed that protein degradation appears to play a crucial role for the cell physiology of Staphylococcus aureus COL during extended periods of glucose starvation. The synthesis rate of virtually all cytosolic and radioactively labeled proteins from growing cells seemed dramatically reduced in the first 3.5 h of glucose starvation. The stability of proteins synthesized in growing cells was monitored by a pulse‐chase approach on a proteome wide scale. Especially, enzymes involved in nucleic acid and amino acid biosyntheses, energy metabolism and biosynthesis of cofactors were found rather rapidly degraded within the onset of the stationary phase, whereas the majority of glycolytic and tricarboxylic acid cycle enzymes remained more stable. Furthermore, single enzymes of biosynthetic pathways were differentially degraded. A metabolite analysis revealed that glucose completely depleted from the medium in the transient phase, and amino acids such as alanine and glycine were taken up by the cells in the stationary phase. We suggest that vegetative proteins no longer required in non‐growing cells and thus no longer protected by integration into functional complexes were degraded. Proteolysis of putative non‐substrate‐bound or “unemployed” proteins appears to be a characteristic feature of S. aureus in order to access nutrients as an important survival strategy under starvation conditions.  相似文献   
102.
The equilibria and kinetics of the interactions of proflavine (PR) and its platinum-containing derivative [PtCl(tmen)(2)HNC(13)H(7)(NHCH(2)CH(2))(2)](+) (PRPt) with double-stranded poly(A) have been investigated by spectrophotometry and Joule temperature-jump relaxation at ionic strength 0.1 M, 25 degrees C, and pH 5.2. Spectrophotometric measurements indicate that base-dye interactions are prevailing. T-jump experiments with polarized light showed that effects due to field-induced alignment could be neglected. Both of the investigated systems display two relaxation effects. The kinetic features of the reaction are discussed in terms of a two-step series mechanism in which a precursor complex DS(I) is formed in the fast step, which is then converted to a final complex in the slow step. The rate constants of the fast step are k(1) = (2.5 +/- 0.4) x 10(6) M(-1) s(-1), k(-1) = (2.4 +/- 0.1) x 10(3) s(-1) for poly(A)-PR and k(1) = (2.3 +/- 0.1) x 10(6) M(-1) s(-1), k(-1) = (1.6 +/- 0.2) x 10(3) s(-1) for poly(A)-PRPt. The rate constants for the slow step are k(2) = (4.5 +/- 0.5) x 10(2) s(-1), k(-2) = (1.7 +/- 0.1) x 10(2) s(-1) for poly(A)-PR and k(2) = 9.7 +/- 1.2 s(-1), k(-2) = 10.6 +/- 0.2 s(-1) for poly(A)-PRPt. Spectrophotometric measurements yield for the equilibrium constants and site size the values K = (4.5 +/- 0.1) x 10(3) M(-1), n = 1.3 +/- 0.5 for poly(A)-PR and K = (2.9 +/- 0.1) x 10(3) M(-1), n = 2.3 +/- 0.6 for poly(A)-PRPt. The values of k(1) are similar and lower than expected for diffusion-limited reactions. The values of k(-1) are similar as well. It is suggested that the formation of DS(I) involves only the proflavine residues in both systems. In contrast, the values of k(2) and k(-2) in poly(A)-PRPt are much lower than in poly(A)-PR. The results suggest that in the complex DS(II) of poly(A)-PRPt both proflavine and platinum residues are intercalated. In addition, a very slow process was detected and ascribed to the covalent binding of Pt(II) to the adenine.  相似文献   
103.
The soil bacterium Bacillus subtilis possesses a fine-tuned and complex heat stress response system. The repressor CtsR, whose activity is regulated by its modulators McsA and McsB, controls the expression of the cellular protein quality control genes clpC, clpE and clpP. Here, we show that the interaction of McsA and McsB with CtsR results in the formation of a ternary complex that not only prevents the binding of CtsR to its target DNA, but also results in a subsequent phosphorylation of McsB, McsA and CtsR. We further demonstrate that McsB is a tyrosine kinase that needs McsA to become activated. ClpC inhibits the kinase activity of McsB, indicating a direct role in initiating CtsR-controlled heat shock response. Interestingly, the kinase domain of McsB is homologous to guanidino phosphotransferase domains originating from eukaryotic arginine and creatine kinases. Mutational analysis of key residues of the guanidino kinase domain demonstrated that McsB utilizes this domain to catalyze the tyrosine phosphorylation. McsB represents therefore a new kind of tyrosine kinase, driven by a guanidino phosphotransferase domain.  相似文献   
104.
During a screening program intended to identify genes encoding enzymes typical for secondary metabolism in Sorangium cellulosum So ce90, an aromatic amino acid decarboxylase gene (ddc) was detected. Expression of ddc in Escherichia coli and subsequent enzyme assays with cell-free extracts confirmed the proposed function derived from amino acid sequence comparisons. In contrast to other aromatic amino acid decarboxylases of eukaryotic origin, the S. cellulosum Ddc converted only L-dihydroxy phenylalanine. This is the first report of a gene encoding an L-dihydroxy phenylalanine decarboxylase in bacteria.  相似文献   
105.
The early adaptive evolution of calmodulin   总被引:7,自引:0,他引:7  
Interaction between gene duplication and natural selection in molecular evolution was investigated utilizing a phylogenetic tree constructed by the parsimony procedure from amino acid sequences of 50 calmodulin- family protein members. The 50 sequences, belonging to seven protein lineages related by gene duplication (calmodulin itself, troponin-C, alkali and regulatory light chains of myosin, parvalbumin, intestinal calcium-binding protein, and glial S-100 phenylalanine-rich protein), came from a wide range of eukaryotic taxa and yielded a denser tree (more branch points within each lineage) than in earlier studies. Evidence obtained from the reconstructed pattern of base substitutions and deletions in these ancestral loci suggests that, during the early history of the family, selection acted as a transforming force on expressed genes among the duplicates to encode molecular sites with new or modified functions. In later stages of descent, however, selection was a conserving force that preserved the structures of many coadapted functional sites. Each branch of the family was found to have a unique average tempo of evolutionary change, apparently regulated through functional constraints. Proteins whose functions dictate multiple interaction with several other macromolecules evolved more slowly than those which display fewer protein-protein and protein-ion interactions, e.g., calmodulin and next troponin-C evolved at the slowest average rates, whereas parvalbumin evolved at the fastest. The history of all lineages, however, appears to be characterized by rapid rates of evolutionary change in earlier periods, followed by slower rates in more recent periods. A particularly sharp contrast between such fast and slow rates is found in the evolution of calmodulin, whose rate of change in earlier eukaryotes was manyfold faster than the average rate over the past 1 billion years. In fact, the amino acid replacements in the nascent calmodulin lineage occurred at residue positions that in extant metazoans are largely invariable, lending further support to the Darwinian hypothesis that natural selection is both a creative and a conserving force in molecular evolution.   相似文献   
106.
107.
108.
109.
A rapid in vitro propagation system leading to the formation of shoots, calli, roots, cell suspensions and plantlets was developed for the Andean medicinal plant Fabiana imbricata (Solanaceae). Massive propagation of shoots and roots was achieved by the temporary immersion system (TIS), morphogenesis and maintenance of cell suspensions by standard in vitro culture techniques. Oleanolic acid (OA), rutin, chlorogenic acid (CA) and scopoletin content in aerial parts of wild growing Fabiana imbricata plants as well as in plantlets regenerated in vitro, callus cultures, cell suspensions and biomass, obtained by the TIS system was assessed by HPLC. On a dry weight basis, the OA content in the aerial parts of the plant ranged between 2.26 and 3.47% while in vitro plantlets, callus and root cultures presented values ranging from not detected up to 0.14%. The rutin content of the samples presented a similar trend with maxima between 0.99 and 3.35% for the aerial parts of the plants to 0.02 to 0.20% for plantlets, 0.12% for cell suspensions and 0.28% for callus. Rutin was not detected in the roots grown by the TIS principle. The CA and scopoletin content in the aerial parts of F. imbricata ranged between 0.22-1.15 and < 0.01-0.55%, respectively. In the plantlets, the concentration of CA was 0.29 to 1.48% with scopoletin in the range 0.09 to 0.64% while in the callus sample, the CA and scopoletin content were 0.46 and 0.66%, respectively. A very different result was found in roots grown by TIS, where both OA and rutin were not detected and its main secondary metabolite, scopoletin was found between a range of 0.99 and 1.41% with CA between of 0.11 and 0.42%.  相似文献   
110.
In antiviral and cancer therapy, deoxyribonucleoside kinases (dNKs) are often the rate-limiting step in activating nucleoside analog (NA) prodrugs into their cytotoxic, phosphorylated forms. We have constructed libraries of hybrid enzymes by non-homologous recombination of the pyrimidine-specific human thymidine kinase 2 and the broad-specificity dNK from Drosophila melanogaster; their low sequence identity has precluded engineering by conventional, homology-dependent shuffling techniques. From these libraries, we identified chimeras that phosphorylate nucleoside analogs with higher activity than either parental enzyme, and that possess new activity towards the anti-HIV prodrug 2',3'-didehydro-3'-deoxythymidine (d4T). These results demonstrate the potential of non-homologous recombination within the dNK family for creating enzymes with new and improved activities towards nucleoside analogs. In addition, our results exposed a previously unknown role for the C-terminal regions of these dNKs in determining substrate selectivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号