首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1462篇
  免费   102篇
  1564篇
  2022年   9篇
  2021年   14篇
  2020年   12篇
  2019年   10篇
  2018年   19篇
  2017年   19篇
  2016年   23篇
  2015年   65篇
  2014年   65篇
  2013年   71篇
  2012年   117篇
  2011年   112篇
  2010年   72篇
  2009年   58篇
  2008年   93篇
  2007年   81篇
  2006年   104篇
  2005年   96篇
  2004年   81篇
  2003年   74篇
  2002年   86篇
  2001年   15篇
  2000年   11篇
  1999年   9篇
  1998年   15篇
  1997年   17篇
  1996年   17篇
  1995年   11篇
  1994年   13篇
  1993年   13篇
  1992年   12篇
  1991年   13篇
  1990年   8篇
  1989年   6篇
  1988年   13篇
  1986年   6篇
  1985年   5篇
  1984年   4篇
  1983年   4篇
  1982年   10篇
  1981年   6篇
  1979年   7篇
  1978年   6篇
  1977年   12篇
  1976年   3篇
  1974年   5篇
  1973年   3篇
  1968年   4篇
  1964年   3篇
  1961年   3篇
排序方式: 共有1564条查询结果,搜索用时 15 毫秒
41.
42.
The Escherichia coli cell division protein FtsQ is a central component of the divisome. FtsQ is a bitopic membrane protein with a large C-terminal periplasmic domain. In this work we investigated the role of the transmembrane segment (TMS) that anchors FtsQ in the cytoplasmic membrane. A set of TMS mutants was made and analyzed for the ability to complement an ftsQ mutant. Study of the various steps involved in FtsQ biogenesis revealed that one mutant (L29/32R;V38P) failed to functionally insert into the membrane, whereas another mutant (L29/32R) was correctly assembled and interacted with FtsB and FtsL but failed to localize efficiently to the cell division site. Our results indicate that the FtsQ TMS plays a role in FtsQ localization to the division site.  相似文献   
43.
At present, Salmonella is considered to express two peroxiredoxin-type peroxidases, TsaA and AhpC. Here we describe an additional peroxiredoxin, Tpx, in Salmonella enterica and show that a single tpx mutant is susceptible to exogenous hydrogen peroxide (H2O2), that it has a reduced capacity to degrade H2O2 compared to the ahpCF and tsaA mutants, and that its growth is affected in activated macrophages. These results suggest that Tpx contributes significantly to the sophisticated defense system that the pathogen has evolved to survive oxidative stress.Salmonella is an important human pathogen which causes a variety of diseases, including gastroenteritis, septicemia, and typhoid fever. In the host, salmonellae reside inside phagocytic cells and are exposed to various host defense mechanisms, including oxidative stress (13). The production of superoxide anion (O2) is crucial, as individuals with chronic granulomatous disease, which is due to a defective phagocyte NADPH oxidase, are more susceptible to infections with Salmonella (10). Likewise, diminished NADPH oxidase activity leads to increased susceptibility to Salmonella in murine macrophages (20-22, 25). Superoxide anion (O2) is weakly reactive and fails to pass through the bacterial cell wall. After conversion to H2O2 by either spontaneous or enzymatic dismutation by superoxide dismutases, it readily diffuses into the bacterial cell and forms reactive hydroxyl radicals (OH) that damage macromolecules such as DNA, proteins, and lipids (12, 17).In principle, Salmonella possesses two classes of enzymes to degrade H2O2. Catalases degrade H2O2 to water and molecular oxygen independent of an additional reductant. Peroxiredoxin-type peroxidases (peroxiredoxins) reduce organic hydroperoxides to alcohols and hydrogen peroxide to water at the expense of NADH or NADPH. In a recent study by Hébrard et al., three members of the catalase family, KatG, KatE, and KatN, and two members of the peroxiredoxin family, AhpC and TsaA, were characterized in Salmonella (14). Previously it had been shown that single katE, katG, and katN Salmonella mutants did not show increased susceptibility to exogenous H2O2 (3, 24). In macrophages a katG katE katN triple mutant had no growth defect, whereas an ahpCF tsaA double mutant showed a reduced growth rate in macrophages (14). These observations point out the multiple routes that have evolved in Salmonella to protect the pathogen against oxidative stress and suggest that peroxiredoxins play a dominant role in the antioxidant defense during infection. In this study we characterized a third peroxiredoxin-type peroxidase, Tpx. Surprisingly, a simple tpx mutant of Salmonella enterica serovar Typhimurium (S. Typhimurium) was more susceptible to exogenous H2O2 than the wild type (WT). The mutant grew less well in activated macrophages and showed a reduced peroxidase activity toward H2O2.  相似文献   
44.

Objective

The objective of this study was to develop and characterize alginate microspheres suitable for embolization with on-demand triggered doxorubicin (DOX) release and whereby the microspheres as well as the drug releasing process can be visualized in vivo using MRI.

Methods and Findings

For this purpose, barium crosslinked alginate microspheres were loaded with temperature sensitive liposomes (TSL/TSL-Ba-ms), which release their payload upon mild hyperthermia. These TSL contained DOX and [Gd(HPDO3A)(H2O)], a T1 MRI contrast agent, for real time visualization of the release. Empty alginate microspheres crosslinked with holmium ions (T2* MRI contrast agent, Ho-ms) were mixed with TSL-Ba-ms to allow microsphere visualization. TSL-Ba-ms and Ho-ms were prepared with a homemade spray device and sized by sieving. Encapsulation of TSL in barium crosslinked microspheres changed the triggered release properties only slightly: 95% of the loaded DOX was released from free TSL vs. 86% release for TSL-Ba-ms within 30 seconds in 50% FBS at 42°C. TSL-Ba-ms (76 ± 41 μm) and Ho-ms (64 ± 29 μm) had a comparable size, which most likely will result in a similar in vivo tissue distribution after an i.v. co-injection and therefore Ho-ms can be used as tracer for the TSL-Ba-ms. MR imaging of a TSL-Ba-ms and Ho-ms mixture (ratio 95:5) before and after hyperthermia allowed in vitro and in vivo visualization of microsphere deposition (T2*-weighted images) as well as temperature-triggered release (T1-weighted images). The [Gd(HPDO3A)(H2O)] release and clusters of microspheres containing holmium ions were visualized in a VX2 tumor model in a rabbit using MRI.

Conclusions

In conclusion, these TSL-Ba-ms and Ho-ms are promising systems for real-time, MR-guided embolization and triggered release of drugs in vivo.  相似文献   
45.
Genes controlling antibacterial resistance may be important in the hygiene hypothesis, which states that lack of bacterial infections during childhood would favor development of allergic disease. We, therefore, studied whether Nramp1 (Slc11a1) alleles, which determine susceptibility (Nramp1(s)) or resistance (Nramp1(r)) to intracellular bacteria, affect the efficacy of heat-killed Mycobacterium vaccae in the treatment of allergic asthma in a mouse model. Treatment of OVA-sensitized Nramp1(s) mice with M. vaccae suppressed airway hyperresponsiveness, airway eosinophilia, Ag-specific IgE, and IL-4 and IL-5 production after OVA aerosol challenge. In contrast, M. vaccae hardly affected these parameters in Nramp1(r) mice. In addition, The Nramp1 gene affected both T cell-mediated responses to M. vaccae in vivo and the level of macrophage activation after stimulation with M. vaccae in vitro. In conclusion, the efficacy of M. vaccae in preventing allergic and asthmatic manifestations in a mouse model is strongly affected by Nramp1 alleles. These findings could have important implications for the future use of mycobacteria and their components in the prevention or treatment of allergic asthma. A new link is described between genes, the environment, and the development of allergy, in which the Nramp1 gene fine tunes the hygiene hypothesis.  相似文献   
46.

Introduction

Chronically relapsing inflammation, tissue remodeling and fibrosis are hallmarks of inflammatory bowel diseases. The aim of this study was to investigate changes in connective tissue in a chronic murine model resulting from repeated cycles of dextran sodium sulphate (DSS) ingestion, to mimic the relapsing nature of the human disease.

Materials and Methods

C57BL/6 mice were exposed to DSS in drinking water for 1 week, followed by a recovery phase of 2 weeks. This cycle of exposure was repeated for up to 3 times (9 weeks in total). Colonic inflammation, fibrosis, extracellular matrix proteins and colonic gene expression were studied. In vivo MRI T 2 relaxometry was studied as a potential non-invasive imaging tool to evaluate bowel wall inflammation and fibrosis.

Results

Repeated cycles of DSS resulted in a relapsing and remitting disease course, which induced a chronic segmental, transmural colitis after 2 and 3 cycles of DSS with clear induction of fibrosis and remodeling of the muscular layer. Tenascin expression mirrored its expression in Crohn’s colitis. Microarray data identified a gene expression profile different in chronic colitis from that in acute colitis. Additional recovery was associated with upregulation of unique genes, in particular keratins, pointing to activation of molecular pathways for healing and repair. In vivo MRI T2 relaxometry of the colon showed a clear shift towards higher T2 values in the acute stage and a gradual regression of T2 values with increasing cycles of DSS.

Conclusions

Repeated cycles of DSS exposure induce fibrosis and connective tissue changes with typical features, as occurring in Crohn’s disease. Colonic gene expression analysis revealed unique expression profiles in chronic colitis compared to acute colitis and after additional recovery, pointing to potential new targets to intervene with the induction of fibrosis. In vivo T2 relaxometry is a promising non-invasive assessment of inflammation and fibrosis.  相似文献   
47.
In a study of occupational exposure to Bacillus thuringiensis, 20 exposed greenhouse workers were examined for Bacillus cereus-like bacteria in fecal samples and on biomonitoring filters. Bacteria with the following characteristics were isolated from eight individuals: intracellular crystalline inclusions characteristic of B. thuringiensis, genes for and production of B. cereus enterotoxins, and positivity for cry11 as determined by PCR. DNA fingerprints of the fecal isolates were identical to those of strains isolated from the commercial products used. Work processes (i.e., spraying) correlated with the presence of B. thuringiensis in the fecal samples (102 to 103 CFU/g of feces). However, no gastrointestinal symptoms correlated with the presence of B. thuringiensis in the fecal samples.  相似文献   
48.
Methane emissions from peat bogs are mitigated by methanotrophs, which live in symbiosis with peat moss (e.g. Sphagnum). Here, we investigate the influence of temperature and resultant changes in methane fluxes on Sphagnum and methanotroph‐related biomarkers, evaluating their potential as proxies in ancient bogs. A pulse‐chase experiment using 13C‐labelled methane in the field clearly showed label uptake in diploptene, a biomarker for methanotrophs, demonstrating in situ methanotrophic activity in Sphagnum under natural conditions. Peat cores containing live Sphagnum were incubated at 5, 10, 15, 20 and 25°C for two months, causing differences in net methane fluxes. The natural δ13C values of diploptene extracted from Sphagnum showed a strong correlation with temperature and methane production. The δ13C values ranged from ?34‰ at 5°C to ?41‰ at 25°C. These results are best explained by enhanced expression of the methanotrophic enzymatic isotope effect at higher methane concentrations. Hence, δ13C values of diploptene, or its diagenetic products, potentially provide a useful tool to assess methanotrophic activity in past environments. Increased methane fluxes towards Sphagnum did not affect δ13C values of bulk Sphagnum and its specific marker, the C23 n‐alkane. The concentration of methanotroph‐specific bacteriohopanepolyols (BHPs), aminobacteriohopanetetrol (aminotetrol, characteristic for type II and to a lesser extent type I methanotrophs) and aminobacteriohopanepentol (aminopentol, a marker for type I methanotrophs) showed a non‐linear response to increased methane fluxes, with relatively high abundances at 25°C compared to those at 20°C or below. Aminotetrol was more abundant than aminopentol, in contrast to similar abundances of aminotetrol and aminopentol in fresh Sphagnum. This probably indicates that type II methanotrophs became prevalent under the experimental conditions relative to type I methanotrophs. Even though BHP concentrations may not directly reflect bacterial activity, they may provide insight into the presence of different types of methanotrophs.  相似文献   
49.
The surface glycoprotein S of transmissible gastroenteritis virus (TGEV) has two binding activities. (i) Binding to porcine aminopeptidase N (pAPN) is essential for the initiation of infection. (ii) Binding to sialic acid residues on glycoproteins is dispensable for the infection of cultured cells but is required for enteropathogenicity. By comparing parental TGEV with mutant viruses deficient in the sialic acid binding activity, we determined the contributions of both binding activities to the attachment of TGEV to cultured cells. In the presence of a functional sialic acid binding activity, the amount of virus bound to two different porcine cell lines was increased sixfold compared to the binding of the mutant viruses. The attachment of parental virus was reduced to levels observed with the mutants when sialic acid containing inhibitors was present or when the cells were pretreated with neuraminidase. In virus overlay binding assays with immobilized cell surface proteins, the mutant virus only recognized pAPN. In addition, the parental virus bound to a high-molecular-mass sialoglycoprotein. The recognition of pAPN was sensitive to reducing conditions and was not dependent on sialic acid residues. On the other hand, binding to the sialic acid residues of the high-molecular-mass glycoprotein was observed regardless of whether the cellular proteins had been separated under reducing or nonreducing conditions. We propose that binding to a surface sialoglycoprotein is required for TGEV as a primary attachment site to initiate infection of intestinal cells. This concept is discussed in the context of other viruses that use two different receptors to infect cells.  相似文献   
50.
Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133+ population of non-adherent endothelial forming cells (naEFCs) which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38) together with mature endothelial cell markers (VEGFR2, CD144 and CD31). These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8) or myeloid markers (CD11b and CD14) which distinguishes them from ‘early’ endothelial progenitor cells (EPCs). Functional studies demonstrated that these naEFCs (i) bound Ulex europaeus lectin, (ii) demonstrated acetylated-low density lipoprotein uptake, (iii) increased vascular cell adhesion molecule (VCAM-1) surface expression in response to tumor necrosis factor and (iv) in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs). Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM)-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号