首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1462篇
  免费   102篇
  1564篇
  2022年   9篇
  2021年   14篇
  2020年   12篇
  2019年   10篇
  2018年   19篇
  2017年   19篇
  2016年   23篇
  2015年   65篇
  2014年   65篇
  2013年   71篇
  2012年   117篇
  2011年   112篇
  2010年   72篇
  2009年   58篇
  2008年   93篇
  2007年   81篇
  2006年   104篇
  2005年   96篇
  2004年   81篇
  2003年   74篇
  2002年   86篇
  2001年   15篇
  2000年   11篇
  1999年   9篇
  1998年   15篇
  1997年   17篇
  1996年   17篇
  1995年   11篇
  1994年   13篇
  1993年   13篇
  1992年   12篇
  1991年   13篇
  1990年   8篇
  1989年   6篇
  1988年   13篇
  1986年   6篇
  1985年   5篇
  1984年   4篇
  1983年   4篇
  1982年   10篇
  1981年   6篇
  1979年   7篇
  1978年   6篇
  1977年   12篇
  1976年   3篇
  1974年   5篇
  1973年   3篇
  1968年   4篇
  1964年   3篇
  1961年   3篇
排序方式: 共有1564条查询结果,搜索用时 15 毫秒
41.
Defining protein complexes is critical to virtually all aspects of cell biology because many cellular processes are regulated by stable protein complexes, and their identification often provides insights into their function. We describe the development and application of a high throughput tandem affinity purification/mass spectrometry platform for cell suspension cultures to analyze cell cycle-related protein complexes in Arabidopsis thaliana. Elucidation of this protein-protein interaction network is essential to fully understand the functional differences between the highly redundant cyclin-dependent kinase/cyclin modules, which are generally accepted to play a central role in cell cycle control, in all eukaryotes. Cell suspension cultures were chosen because they provide an unlimited supply of protein extracts of actively dividing and undifferentiated cells, which is crucial for a systematic study of the cell cycle interactome in the absence of plant development. Here we report the mapping of a protein interaction network around six known core cell cycle proteins by an integrated approach comprising generic Gateway-based vectors with high cloning flexibility, the fast generation of transgenic suspension cultures, tandem affinity purification adapted for plant cells, matrix-assisted laser desorption ionization tandem mass spectrometry, data analysis, and functional assays. We identified 28 new molecular associations and confirmed 14 previously described interactions. This systemic approach provides new insights into the basic cell cycle control mechanisms and is generally applicable to other pathways in plants.  相似文献   
42.

The saturation pulse method provides a means to distinguish between photochemical and non-photochemical quenching, based on the assumption that the former is suppressed by a saturating pulse of light (SP) and that the latter is not affected by the SP. Various types of non-photochemical quenching have been distinguished by their rates of dark relaxation in the time ranges of seconds, minutes, and hours. Here we report on a special type of non-photochemical quenching, which is rapidly induced by a pulse of high-intensity light, when PS II reaction centers are closed, and rapidly relaxes again after the pulse. This high-intensity quenching, HIQ, can be quantified by pulse-amplitude-modulation (PAM) fluorimetry (MULTI-COLOR-PAM, high sensitivity combined with high time resolution) via the quasi-instantaneous post-pulse fluorescence increase that precedes recovery of photochemical quenching in the 100–400-µs range. The HIQ amplitude increases linearly with the effective rate of quantum absorption by photosystem II, reaching about 8% of maximal fluorescence yield. It is not affected by DCMU, is stimulated by anoxic conditions, and is suppressed by energy-dependent non-photochemical quenching (NPQ). The HIQ amplitude is close to proportional to the square of maximal fluorescence yield, Fm′, induced by an SP and varied by NPQ. These properties are in line with the working hypothesis of HIQ being caused by the annihilation of singlet excited chlorophyll a by triplet excited carotenoid. Significant underestimation of maximal fluorescence yield and photosystem II quantum yield in dark-acclimated samples can be avoided by use of moderate SP intensities. In physiologically healthy illuminated samples, NPQ prevents significant lowering of effective photosystem II quantum yield by HIQ, if excessive SP intensities are avoided.

  相似文献   
43.

Objective

The nature of changes in brain activation related to good recovery of arm function after stroke is still unclear. While the notion that this is a reflection of neuronal plasticity has gained much support, confounding by compensatory strategies cannot be ruled out. We address this issue by comparing brain activity in recovered patients 6 months after stroke with healthy controls.

Methods

We included 20 patients with upper limb paresis due to ischemic stroke and 15 controls. We measured brain activation during a finger flexion-extension task with functional MRI, and the relationship between brain activation and hand function. Patients exhibited various levels of recovery, but all were able to perform the task.

Results

Comparison between patients and controls with voxel-wise whole-brain analysis failed to reveal significant differences in brain activation. Equally, a region of interest analysis constrained to the motor network to optimize statistical power, failed to yield any differences. Finally, no significant relationship between brain activation and hand function was found in patients. Patients and controls performed scanner task equally well.

Conclusion

Brain activation and behavioral performance during finger flexion-extensions in (moderately) well recovered patients seems normal. The absence of significant differences in brain activity even in patients with a residual impairment may suggest that infarcts do not necessarily induce reorganization of motor function. While brain activity could be abnormal with higher task demands, this may also introduce performance confounds. It is thus still uncertain to what extent capacity for true neuronal repair after stroke exists.  相似文献   
44.
45.
Numerous studies have shown that food proteins may be a source of bioactive peptides. Those peptides are encrypted in the protein sequence. They stay inactive within the parental protein until release by proteolytic enzymes (Mine and Kovacs-Nolan in Worlds Poult Sci J 62(1):87–95, 2006; Hartman and Miesel in Curr Opin Biotechnol 18:163–169, 2007). Once released the bioactive peptides exhibit several biofunctionalities and may serve therapeutic roles in body systems. Opioid peptides, peptides lowering high blood pressure, inhibiting platelet aggregation as well as being carriers of metal ions and peptides with immunostimulatory, antimicrobial and antioxidant activities have been described (Hartman and Miesel in Curr Opin Biotechnol 18:163–169, 2007). The biofunctional abilities of the peptides have therefore aroused a lot of scientific, technological and consumer interest with respect to the role of dietary proteins in controlling and influencing health (Möller et al. in Eur J Nutr 47(4):171–182, 2008). Biopeptides may find wide application in food production, the cosmetics industry as well as in the prevention and treatment of various medical conditions. They are manufactured by chemical and biotechnological methods (Marx in Chem Eng News 83(11):17–24. 2005; Hancock and Sahl in Nat Biotechnol 24(12):1551–1557, 2006). Depending on specific needs (food or pharmaceutical industry) different degrees of peptide purifications are required. This paper discusses the practicability of manufacturing bioactive peptides, especially from food proteins.  相似文献   
46.
Nisin is a lanthionine-containing antimicrobial peptide produced by Lactococcus lactis. Its (methyl)lanthionines are introduced by two posttranslational enzymatic steps involving the dehydratase NisB, which dehydrates serine and threonine residues, and the cyclase NisC, which couples these dehydrated residues to cysteines, yielding thioether-bridged amino acids called lanthionines. The prenisin is subsequently exported by the ABC transporter NisT and extracellularly processed by the peptidase NisP. L. lactis expressing the nisBTC genes can modify and secrete a wide range of nonlantibiotic peptides. Here we demonstrate that in the absence of NisT and NisC, the Sec pathway of L. lactis can be exploited for the secretion of dehydrated variants of therapeutic peptides. Furthermore, posttranslational modifications by NisB and NisC still occur even when the nisin leader is preceded by a Sec signal peptide or a Tat signal peptide 27 or 44 amino acids long, respectively. However, transport of fully modified prenisin via the Sec pathway is impaired. The extent of NisB-mediated dehydration could be improved by raising the intracellular concentration NisB or by modulating the export efficiency through altering the signal sequence. These data demonstrate that besides the traditional lantibiotic transporter NisT, the Sec pathway with an established broad substrate range can be utilized for the improved export of lantibiotic enzyme-modified (poly)peptides.  相似文献   
47.
Several lines of evidence support that beta-amyloid (Abeta)-induced neurotoxicity is mediated through the generation of reactive oxygen species (ROS) and elevation of intracellular calcium. Salvianolic acid B (Sal B), the major and most active anti-oxidant from Salvia miltiorrhiza, protects diverse kinds of cells from damage caused by a variety of toxic stimuli. In the present study, we investigated the effects of Sal B against beta-amyloid peptide 25-35 (Abeta(25-35))-induced neurotoxicity, focused mainly on the neurotoxic effects of Abeta(25-35) and the neuroprotective effects of Sal B on the expression of brain-pancreas relative protein (BPRP), which is a new protein and mainly expressed in brain and pancreas. Following exposure of PC12 cells to 20 microM Abeta(25-35), a marked reduction in the expression of BPRP was observed, accompanied with decreased cell viability and increased cell apoptosis, as well as increased ROS production and calcium influx. Treatment of the PC12 cells with Sal B significantly reversed the expression of BPRP and cell viability while it decreased ROS production and intracellular calcium. These data indicate that Abeta(25-35) decreases the expression of BPRP via enhanced formation of intracellular ROS and increased intracellular calcium, and that Sal B, as an anti-oxidant, protects against Abeta(25-35)-induced reduction in expression of BPRP through its effects on suppressing the production of ROS, calcium flux, and apoptosis. However, the role(s) of BPRP in AD and the definite mechanisms by which Sal B protects against Abeta(25-35)-induced reduction in the expression of BPRP require further study.  相似文献   
48.
Production of reactive oxygen species represents a fundamental innate defense against microbes in a diversity of host organisms. Oxidative stress, amongst others, converts peptidyl and free methionine to a mixture of methionine-S- (Met-S-SO) and methionine-R-sulfoxides (Met-R-SO). To cope with such oxidative damage, methionine sulfoxide reductases MsrA and MsrB are known to reduce MetSOs, the former being specific for the S-form and the latter being specific for the R-form. However, at present the role of methionine sulfoxide reductases in the pathogenesis of intracellular bacterial pathogens has not been fully detailed. Here we show that deletion of msrA in the facultative intracellular pathogen Salmonella (S.) enterica serovar Typhimurium increased susceptibility to exogenous H(2)O(2), and reduced bacterial replication inside activated macrophages, and in mice. In contrast, a ΔmsrB mutant showed the wild type phenotype. Recombinant MsrA was active against free and peptidyl Met-S-SO, whereas recombinant MsrB was only weakly active and specific for peptidyl Met-R-SO. This raised the question of whether an additional Met-R-SO reductase could play a role in the oxidative stress response of S. Typhimurium. MsrC is a methionine sulfoxide reductase previously shown to be specific for free Met-R-SO in Escherichia (E.) coli. We tested a ΔmsrC single mutant and a ΔmsrBΔmsrC double mutant under various stress conditions, and found that MsrC is essential for survival of S. Typhimurium following exposure to H(2)O(2,) as well as for growth in macrophages, and in mice. Hence, this study demonstrates that all three methionine sulfoxide reductases, MsrA, MsrB and MsrC, facilitate growth of a canonical intracellular pathogen during infection. Interestingly MsrC is specific for the repair of free methionine sulfoxide, pointing to an important role of this pathway in the oxidative stress response of Salmonella Typhimurium.  相似文献   
49.
Chlorosomes are sac-like, light-harvesting organelles that characteristically contain very large numbers of bacteriochlorophyll (BChl) c, d, or e molecules. These antenna structures occur in chlorophototrophs belonging to some members of the Chlorobi and Chloroflexi phyla and are also found in a recently discovered member of the phylum Acidobacteria, "Candidatus Chloracidobacterium thermophilum." "Ca. Chloracidobacterium thermophilum" is the first aerobic organism discovered to possess chlorosomes as light-harvesting antennae for phototrophic growth. Chlorosomes were isolated from "Ca. Chloracidobacterium thermophilum" and subjected to electron microscopic, spectroscopic, and biochemical analyses. The chlorosomes of "Ca. Chloracidobacterium thermophilum" had an average size of ~100 by 30 nm. Cryo-electron microscopy showed that the BChl c molecules formed folded or twisted, sheet-like structures with a lamellar spacing of ~2.3 nm. Unlike the BChls in the chlorosomes of the green sulfur bacterium Chlorobaculum tepidum, concentric cylindrical nanotubes were not observed. Chlorosomes of "Ca. Chloracidobacterium thermophilum" contained a homolog of CsmA, the BChl a-binding, baseplate protein; CsmV, a protein distantly related to CsmI, CsmJ, and CsmX of C. tepidum, which probably binds a single [2Fe-2S] cluster; and five unique polypeptides (CsmR, CsmS, CsmT, CsmU, and a type II NADH dehydrogenase homolog). Although "Ca. Chloracidobacterium thermophilum" is an aerobe, energy transfer among the BChls in these chlorosomes was very strongly quenched in the presence of oxygen (as measured by quenching of fluorescence emission). The combined analyses showed that the chlorosomes of "Ca. Chloracidobacterium thermophilum" possess a number of unique features but also share some properties with the chlorosomes found in anaerobic members of other phyla.  相似文献   
50.
The effect of ant attendance on the spread of barley yellow dwarf virus by Schizaphis (Toxoptera) graminum (Rondani) was studied under field conditions. Aphids visited by ants multiplied more rapidly than unattended colonies. Secondary spread of virus is caused by apterae which leave overcrowded plants and become established on nearby hosts. Ant-mediated spread of virus is typically confined to the edges of the field. Excavations made by ants around subterranean parts of small grains provide shelter and a suitable feeding site for tht aphid vector.
Zusammenfassung Die Anregung zur vorliegenden Arbeit wurde dadurch gegeben, daß während einer Schlechtwetterperiode auf unterirdischen Teilen von Hafer- und Gerstenpflanzen von Ameisen besuchte Blattlauskolonien beobachtet wurden. Es handelte sich dabei um die Ameise Lasius neoniger (Emery) und die Blattlaus Schizaphis graminum (Rondani), die als Getreideschädling und als Überträger der Gelbverzwergungsvirose der Gerste in Nordamerika außerordentlich schädlich ist.Die Ergebnisse der Studie bestätigen erneut ältere Beobachtungen, nach denen sich die Populationsdichte der von Ameisen besuchten Blattläuse erheblich erhöht. Verschiedentlich konnte nachgewiesen werden, daß Ameisen Blattlausfeinde, insbesondere Marienkäfer, vertreiben, sobald diese in ihr Territorium eindringen.Die durch Ameisen geförderte Ausbreitung des Virus muß im engen Zusammenhang mit der populationsfördenden Wirkung des Blattlausbesuches gesehen werden. Ungeflügelte Blattläuse verlassen übervölkerte Pflanzen und wandern in die Umgebung der Wirtspflanze ab. Dabei können Entfernungen zurückgelegt werden, die ohne weiteres ausreichen, benachbarte Pflanzen aufzufinden und gegebenenfals mit Virus zu infizieren. Dadurch, daß sich L. neoniger hauptsächlich an den Feldrändern aufhält, bleibt allerdings die Virusausbreitung auf diese Region beschränkt und dringt nicht weiter in den Bestand vor. Selbst unter günstigen Bedingungen, das heißt in der Gegenwart von Ameisen, Blattläusen und Virus während des anfälligen Jugendstadiums des Getreides, bleibt die Ausbreitung des Virus und der dadurch angerichtete Schaden eng lokalisiert.Eine gewisse Bedeutung in der Epidemiologie der Gelbverzwergungsvirose dürfte auch dem Vorkommen von Blattläusen auf unterirdischen Pflanzenteilen zuzuschreiben sein, weil die Läuse hier gegen Witterungs- und Feindeinwirkung geschützt sind.Die von verschiedenen Seiten beobachtete enge Bindung zwischen Ameisen und Blattläusen konnte in dem vorliegenden Fall nicht beobachtet werden. Ein besonderer Instinkt der Ameisen oder Blattläuse scheint mir zur Aufrechterhaltung der Wechselbeziehung nicht notwendig.


Approved for publication by the Director of the South Dakota Agricultural Experiment Station as Journal Series No. 583.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号