首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1462篇
  免费   100篇
  2022年   7篇
  2021年   14篇
  2020年   12篇
  2019年   10篇
  2018年   19篇
  2017年   19篇
  2016年   23篇
  2015年   65篇
  2014年   65篇
  2013年   71篇
  2012年   117篇
  2011年   112篇
  2010年   72篇
  2009年   58篇
  2008年   93篇
  2007年   81篇
  2006年   104篇
  2005年   96篇
  2004年   81篇
  2003年   74篇
  2002年   86篇
  2001年   15篇
  2000年   11篇
  1999年   9篇
  1998年   15篇
  1997年   17篇
  1996年   17篇
  1995年   11篇
  1994年   13篇
  1993年   13篇
  1992年   12篇
  1991年   13篇
  1990年   8篇
  1989年   6篇
  1988年   13篇
  1986年   6篇
  1985年   5篇
  1984年   4篇
  1983年   4篇
  1982年   10篇
  1981年   6篇
  1979年   7篇
  1978年   6篇
  1977年   12篇
  1976年   3篇
  1974年   5篇
  1973年   3篇
  1968年   4篇
  1964年   3篇
  1961年   3篇
排序方式: 共有1562条查询结果,搜索用时 15 毫秒
201.
202.
The following questions concerning glycogen synthesis and degradation were examined in cultured rat myotubes. 1) Is synthesis and degradation of the individual glycogen molecule a strictly ordered process, with the last glucosyl unit incorporated into the molecule being the first to be released (the last-in-first-out principle), or is it a random process? 2) Are all glycogen molecules in skeletal muscle synthesized and degraded in phase (simultaneous order) or out of phase (sequential order)? Basal glycogen stores were minimized by fasting and were subsequently replenished in two intervals, the first (0-0.5 h) with tritium-labeled and the second (0.5-3 h) with carbon-labeled glucose as precursor. Glycogen degradation was initiated by addition of forskolin. The kinetics of glycogen accumulation as well as degradation could be approximated by monoexponential equations with rate constants of 0.81 and 1.39 h(-1), respectively. The degradation of glycogen largely followed the last-in-first-out principle, particularly in the initial period. Analysis of the size of the glycogen molecules and the beta-dextrin limit during glycogen accumulation and degradation showed that both synthesis and degradation of glycogen molecules are largely sequential and the small deviation from this order is most pronounced at the beginning of the accumulation and at the end of the degradation period. This pattern may reflect the number of synthase and phosphorylase molecules and fits well with the role of glycogen in skeletal muscle as a readily available energy store and with the known structure of the glycogen molecule. It is emphasized that the observed nonlinear relation between the change in glycogen concentration and release of label during glycogen degradation may have important practical consequences for interpretation of experimental data.  相似文献   
203.
Ståhl  Lena  Nyberg  Gert  Högberg  Peter  Buresh  Roland J. 《Plant and Soil》2002,243(1):103-117
The effects of planted fallows of Sesbania sesban (L.) Merr. and Calliandra calothyrsus (Meissner) on soil inorganic nitrogen dynamics and two subsequent maize crops were evaluated under field conditions in the highlands of eastern Kenya. Continuous unfertilised maize, maize/bean rotation and natural regrowth of vegetation (weed fallow) were used as control treatments. The proportion of symbiotic N2-fixation was estimated by measuring both leaf 15N enrichment and whole-plant 15N enrichment by the 15N dilution technique for Sesbania and Calliandra, using Eucalyptus saligna (Sm.) and Grevillea robusta (A. Cunn) as reference species. Above- and below-ground biomass and N contents were examined in Sesbania, Calliandra, Eucalyptus and Grevillea 22 months after planting. Both the content of inorganic N in the topsoil and the quantity of N mineralised during rainy seasons were higher after the Sesbania fallows than after the other treatments. Compared to the continuous unfertilised maize treatment, both residual crop yields were significantly higher when mineral N (one application of 60 kg N ha–1) was added. Furthermore, the second crop following the Sesbania fallow was significantly higher than the continuous maize crop. The above-ground biomass of the trees at final harvest were 31.5, 24.5, 32.5 and 43.5 Mg ha–1 for the Sesbania, Calliandra, Grevillea and Eucalyptus, respectively. For the total below-ground biomass the values for these same tree species were 11.1, 15.5, 17.7, and 19.1 Mg ha–1, respectively, of which coarse roots (>2 mm), including tap roots, amounted to 70–90%. About 70–90% of the N in Sesbania, and 50–70% in Calliandra, was derived from N2-fixation. Estimates based on leaf 15N enrichment and whole-plant 15N enrichment were strongly correlated. The N added by N2-fixation amounted to 280–360 kg N ha–1 for Sesbania and 120–170 kg N ha–1 for Calliandra, resulting in a positive N balance after two maize cropping seasons of 170–250 kg N ha–1 and 90–140 kg N ha–1, for Sesbania and Calliandra, respectively. All the other treatments gave negative N balances after two cropping seasons. We conclude that Sesbania sesban is a tree species well suited for short duration fallows due to its fast growth, high nutrient content, high litter quality and its ability to fix large amounts of N2 from the atmosphere.  相似文献   
204.
Summary Recombinant protein G (RPG) was conjugated to colloidal gold particles and used for immunocytochemistry. In this report, the preparation of RPG—gold conjugates (RPGG) and the application of these conjugates in spot blot tests and in double immunolabelling are described. The immunolabelling was performed on ultracryosections of pig small intestine using antibodies directed against aminopeptidase N and sucrase—isomaltase. The labelling efficiency of RPGG was compared to that of protein A—gold conjugates (PAG) in different compartments of the enterocyte. Quantification showed that the labelling intensity was dependent on the size of the marker as well as on the kind of protein used for complex formation. The distributions for RPGG and PAG were respectively: for the 12nm particles, 10.3 and 6.2 particles/µm of length of microvillar membrane, 3.5 and 1.0 particles/µm2 of Golgi profile and 5.9 and 2.0 particles/µm2 of multivesicular body profile; and for the 6nm particles, 49.6 and 15.7 particles/µm of length of microvillar membrane, 24.4 and 5.0 particles/µm2 of Golgi profile and 25.4 and 3.4. particles/µm2 of multivesicular body profile. Controls showed very little non-specific gold labelling (<0.02 gold particles/µm2 of section).  相似文献   
205.
206.
Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133+ population of non-adherent endothelial forming cells (naEFCs) which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38) together with mature endothelial cell markers (VEGFR2, CD144 and CD31). These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8) or myeloid markers (CD11b and CD14) which distinguishes them from ‘early’ endothelial progenitor cells (EPCs). Functional studies demonstrated that these naEFCs (i) bound Ulex europaeus lectin, (ii) demonstrated acetylated-low density lipoprotein uptake, (iii) increased vascular cell adhesion molecule (VCAM-1) surface expression in response to tumor necrosis factor and (iv) in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs). Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM)-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis.  相似文献   
207.
208.
In the current study we show that non-verbal food-evoked emotion scores significantly improve food choice prediction over merely liking scores. Previous research has shown that liking measures correlate with choice. However, liking is no strong predictor for food choice in real life environments. Therefore, the focus within recent studies shifted towards using emotion-profiling methods that successfully can discriminate between products that are equally liked. However, it is unclear how well scores from emotion-profiling methods predict actual food choice and/or consumption. To test this, we proposed to decompose emotion scores into valence and arousal scores using Principal Component Analysis (PCA) and apply Multinomial Logit Models (MLM) to estimate food choice using liking, valence, and arousal as possible predictors. For this analysis, we used an existing data set comprised of liking and food-evoked emotions scores from 123 participants, who rated 7 unlabeled breakfast drinks. Liking scores were measured using a 100-mm visual analogue scale, while food-evoked emotions were measured using 2 existing emotion-profiling methods: a verbal and a non-verbal method (EsSense Profile and PrEmo, respectively). After 7 days, participants were asked to choose 1 breakfast drink from the experiment to consume during breakfast in a simulated restaurant environment. Cross validation showed that we were able to correctly predict individualized food choice (1 out of 7 products) for over 50% of the participants. This number increased to nearly 80% when looking at the top 2 candidates. Model comparisons showed that evoked emotions better predict food choice than perceived liking alone. However, the strongest predictive strength was achieved by the combination of evoked emotions and liking. Furthermore we showed that non-verbal food-evoked emotion scores more accurately predict food choice than verbal food-evoked emotions scores.  相似文献   
209.
210.
Examination of the ultrastucture of the unarmored dinoflagellate Gymnodinium aureolum (Hulburt) G. Hansen (syn: Gyrodinium aureolum Hulburt) revealed the presence of nuclear chambers, which are specialized differentiations of the nuclear envelope, similar to those described in the type species of Gymnodinium , G. fuscum (Ehrenberg) Stein and certain other Gymnodinium species. The nuclear pores were restricted to these chambers. In the flagellar apparatus a nuclear fibrous connective linked the longitudinal microtubular root and the nucleus. This structure had so far been observed only in Gymnodinium spp. and in the heterotrophic species Actiniscus pentasterias (Ehrenberg) Ehrenberg, Nematodinium armatum (Dogiel) Kofoid et Swezy and Polykrikos kofoidii Chatton. Another unusual feature of G. aureolum was the presence of a striated fiber in the longitudinal flagellum, a feature previously only found in Ceratium furca (Ehrenberg) Claparède et Lachmann and C. tripos (O.F. Müller) Nitzsch. Gymnodinium aureolum also possessed a prominent ventral protrusion associated with the peduncle and containing electron opaque material. It is concluded that G. aureolum belongs to the Gymnodinium sensu stricto group. This may be a temporary classification, however, because G. aureolum and its allies differ from the type species G. fuscum by the presence of a transverse striated root, striated collars, trichocysts, and a peduncle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号