首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   337篇
  免费   25篇
  国内免费   1篇
  2023年   3篇
  2022年   8篇
  2021年   6篇
  2020年   3篇
  2019年   4篇
  2018年   5篇
  2017年   5篇
  2016年   7篇
  2015年   18篇
  2014年   20篇
  2013年   13篇
  2012年   20篇
  2011年   7篇
  2010年   12篇
  2009年   17篇
  2008年   15篇
  2007年   14篇
  2006年   14篇
  2005年   11篇
  2004年   11篇
  2003年   10篇
  2002年   9篇
  2001年   5篇
  2000年   3篇
  1999年   6篇
  1998年   4篇
  1996年   4篇
  1994年   4篇
  1993年   4篇
  1992年   4篇
  1991年   3篇
  1988年   3篇
  1986年   4篇
  1985年   6篇
  1982年   3篇
  1981年   4篇
  1980年   10篇
  1979年   5篇
  1978年   4篇
  1977年   4篇
  1976年   4篇
  1975年   6篇
  1971年   6篇
  1969年   2篇
  1968年   3篇
  1967年   2篇
  1965年   3篇
  1964年   2篇
  1961年   2篇
  1960年   2篇
排序方式: 共有363条查询结果,搜索用时 15 毫秒
61.
62.
For several decades isotope labelling techniques have been the indispensable tools used to unravel pathways of secondary product biosynthesis. NMR spectroscopy, together with mass spectrometry, is the most effective measuring technique used in the analysis of metabolites enriched with stable isotopes. 2H and 13C are the NMR-detectable nuclides which have been most frequently employed in plant secondary metabolite synthesis. Examples from the biosynthesis of phenylpropanoids, phenylphenalenones, and glucosinolates are used when discussing some aspects of one-dimensional NMR analysis of metabolites selectively labelled with 2H and 13C. Besides direct NMR detection of 13C-enriched metabolites, special emphasis is placed on indirect detection of 13C and 2H, especially by HPLC-1H NMR coupling, to analyse the isotopomer pattern of compounds in low concentration. The examples discussed in this paper were obtained from studies with Anigozanthos preissii (root cultures) (Haemodoraceae) and Eruca sativa (Brassicaceae).  相似文献   
63.
Environmental conditions likely affect physiology and behaviour of mice used for life sciences research on Earth or in Space. Here, we analysed the effects of cage confinement on the weightbearing musculoskeletal system, behaviour and stress of wild-type mice (C57BL/6JRj, 30 g b.wt., total n = 24) housed for 25 days in a prototypical ground-based and fully automated life support habitat device called “Mice in Space” (MIS). Compared with control housing (individually ventilated cages) the MIS mice revealed no significant changes in soleus muscle size and myofiber distribution (type I vs. II) and quality of bone (3-D microarchitecture and mineralisation of calvaria, spine and femur) determined by confocal and micro-computed tomography. Corticosterone metabolism measured non-invasively (faeces) monitored elevated adrenocortical activity at only start of the MIS cage confinement (day 1). Behavioural tests (i.e., grip strength, rotarod, L/D box, elevated plus-maze, open field, aggressiveness) performed subsequently revealed only minor changes in motor performance (MIS vs. controls). The MIS habitat will not, on its own, produce major effects that could confound interpretation of data induced by microgravity exposure during spaceflight. Our results may be even more helpful in developing multidisciplinary protocols with adequate scenarios addressing molecular to systems levels using mice of various genetic phenotypes in many laboratories. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
64.
Mounting evidence indicates that structural and functional vascular changes associated with two-kidney, one-clip (2K-1C) hypertension result, at least in part, from altered activity of matrix metalloproteinases (MMPs). Because MMPs are upregulated by increased formation of reactive oxygen species (ROS), we hypothesized that antioxidant approaches could attenuate the increases in MMP-2 expression/activity and the vascular dysfunction and remodeling associated with 2K-1C hypertension. Sham-operated or 2K-1C hypertensive rats were treated with tempol 18 mg/kg/day or apocyanin 25 mg/kg/day (or vehicle). Systolic blood pressure was monitored weekly. After 8 weeks of treatment, aortic rings were isolated to assess endothelium-dependent and -independent relaxation. Quantitative morphometry of structural changes in the aortic wall was studied in hematoxylin/eosin sections. Aortic and systemic ROS levels were measured using dihydroethidine and thiobarbituric acid-reactive substances, respectively. Aortic MMP-2 levels and activity were determined by gelatin and in situ zymography, fluorimetry, and immunohistochemistry. Tempol and apocyanin attenuated 2K-1C hypertension (181 ± 20.8 and 192 ± 17.6 mm Hg, respectively, versus 213 ± 18 mm Hg in hypertensive controls; both p < 0.05) and prevented the reduction in endothelium-dependent vasorelaxation found in 2K-1C rats. Tempol, but not apocyanin (p > 0.05), prevented the vascular remodeling found in 2K-1C rats (all p < 0.01). Tempol was more effective than apocyanin in attenuating hypertension-induced increases in oxidative stress (both p < 0.05), MMP-2 levels, and MMP-2 activity in hypertensive rats (all p < 0.05). Our results suggest that antioxidant approaches decrease MMP-2 upregulation and attenuate the vascular dysfunction and remodeling during 2K-1C hypertension.  相似文献   
65.
To study the dynamics of interpolar microtubules (iMTs) in Saccharomyces cerevisiae cells, we photobleached a considerable portion of the middle region of anaphase spindles in cells expressing tubulin‐green fluorescent protein (GFP) and followed fluorescence recovery at the iMT plus‐ends. We found that during anaphase, iMTs show phases of fast growth and shrinkage that are restricted to the iMT plus‐ends. Our data indicate that iMT plus‐end dynamics are regulated during mitosis, as fluorescence recovery was faster in intermediate anaphase (30 s) compared with long (100 s) and pre‐anaphase (80 s) spindles. We also observed that deletion of Cin8, a microtubule‐crosslinking kinesin‐5 motor protein, reduced the recovery rate in anaphase spindles, indicating that Cin8 contributes to the destabilization of iMT plus‐ends. Finally, we show that in cells lacking the midzone organizing protein Ase1, iMTs are highly dynamic and are exchangeable throughout most of their length, indicating that midzone organization is essential for restricting iMT dynamics.  相似文献   
66.

Background

Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, including hyper- or hypo-activity of the stress hormone system, plays a critical role in the pathophysiology of mood disorders such as major depression (MD). Further biological hallmarks of MD are disturbances in circadian rhythms and sleep architecture. Applying a translational approach, an animal model has recently been developed, focusing on the deviation in sensitivity to stressful encounters. This so-called ‘stress reactivity’ (SR) mouse model consists of three separate breeding lines selected for either high (HR), intermediate (IR), or low (LR) corticosterone increase in response to stressors.

Methodology/Principle Findings

In order to contribute to the validation of the SR mouse model, our study combined the analysis of behavioural and HPA axis rhythmicity with sleep-EEG recordings in the HR/IR/LR mouse lines. We found that hyper-responsiveness to stressors was associated with psychomotor alterations (increased locomotor activity and exploration towards the end of the resting period), resembling symptoms like restlessness, sleep continuity disturbances and early awakenings that are commonly observed in melancholic depression. Additionally, HR mice also showed neuroendocrine abnormalities similar to symptoms of MD patients such as reduced amplitude of the circadian glucocorticoid rhythm and elevated trough levels. The sleep-EEG analyses, furthermore, revealed changes in rapid eye movement (REM) and non-REM sleep as well as slow wave activity, indicative of reduced sleep efficacy and REM sleep disinhibition in HR mice.

Conclusion/Significance

Thus, we could show that by selectively breeding mice for extremes in stress reactivity, clinically relevant endophenotypes of MD can be modelled. Given the importance of rhythmicity and sleep disturbances as biomarkers of MD, both animal and clinical studies on the interaction of behavioural, neuroendocrine and sleep parameters may reveal molecular pathways that ultimately lead to the discovery of new targets for antidepressant drugs tailored to match specific pathologies within MD.  相似文献   
67.
Neurons of the developing brain are especially vulnerable to environmental agents that damage DNA (i.e., genotoxicants), but the mechanism is poorly understood. The focus of the present study is to demonstrate that DNA damage plays a key role in disrupting neurodevelopment. To examine this hypothesis, we compared the cytotoxic and DNA damaging properties of the methylating agents methylazoxymethanol (MAM) and dimethyl sulfate (DMS) and the mono- and bifunctional alkylating agents chloroethylamine (CEA) and nitrogen mustard (HN2), in granule cell neurons derived from the cerebellum of neonatal wild type mice and three transgenic DNA repair strains. Wild type cerebellar neurons were significantly more sensitive to the alkylating agents DMS and HN2 than neuronal cultures treated with MAM or the half-mustard CEA. Parallel studies with neuronal cultures from mice deficient in alkylguanine DNA glycosylase (Aag?/?) or O6-methylguanine methyltransferase (Mgmt?/?), revealed significant differences in the sensitivity of neurons to all four genotoxicants. Mgmt?/? neurons were more sensitive to MAM and HN2 than the other genotoxicants and wild type neurons treated with either alkylating agent. In contrast, Aag?/? neurons were for the most part significantly less sensitive than wild type or Mgmt?/? neurons to MAM and HN2. Aag?/? neurons were also significantly less sensitive than wild type neurons treated with either DMS or CEA. Granule cell development and motor function were also more severely disturbed by MAM and HN2 in Mgmt?/? mice than in comparably treated wild type mice. In contrast, cerebellar development and motor function were well preserved in MAM-treated Aag?/? or MGMT-overexpressing (MgmtTg+) mice, even as compared with wild type mice suggesting that AAG protein increases MAM toxicity, whereas MGMT protein decreases toxicity. Surprisingly, neuronal development and motor function were severely disturbed in MgmtTg+ mice treated with HN2. Collectively, these in vitro and in vivo studies demonstrate that the type of DNA lesion and the efficiency of DNA repair are two important factors that determine the vulnerability of the developing brain to long-term injury by a genotoxicant.  相似文献   
68.

Background

Cutaneous leishmaniasis (CL) is treated with parenteral drugs for decades with decreasing rate cures. Miltefosine is an oral medication with anti-leishmania activity and may increase the cure rates and improve compliance.

Methodology/Principal Findings

This study is a randomized, open-label, controlled clinical trial aimed to evaluate the efficacy and safety of miltefosine versus pentavalent antimony (Sbv) in the treatment of patients with CL caused by Leishmania braziliensis in Bahia, Brazil. A total of 90 patients were enrolled in the trial; 60 were assigned to receive miltefosine and 30 to receive Sbv. Six months after treatment, in the intention-to-treat analyses, the definitive cure rate was 53.3% in the Sbv group and 75% in the miltefosine group (difference of 21.7%, 95% CI 0.08% to 42.7%, p = 0.04). Miltefosine was more effective than Sbv in the age group of 13–65 years-old compared to 2–12 years-old group (78.9% versus 45% p = 0.02; 68.2% versus 70% p = 1.0, respectively). The incidence of adverse events was similar in the Sbv and miltefosine groups (76.7% vs. 78.3%). Vomiting (41.7%), nausea (40%), and abdominal pain (23.3%) were significantly more frequent in the miltefosine group while arthralgias (20.7%), mialgias (20.7%) and fever (23.3%) were significantly more frequent in the Sbv group.

Conclusions

This study demonstrates that miltefosine therapy is more effective than standard Sbv and safe for the treatment of CL caused by Leishmania braziliensis in Bahia, Brazil.

Trial Registration

Clinicaltrials.gov Identifier NCT00600548  相似文献   
69.

Background

Detection of congenital T. cruzi transmission is considered one of the pillars of control programs of Chagas disease. Congenital transmission accounts for 25% of new infections with an estimated 15,000 infected infants per year. Current programs to detect congenital Chagas disease in Latin America utilize microscopy early in life and serology after 6 months. These programs suffer from low sensitivity by microscopy and high loss to follow-up later in infancy. We developed a Chagas urine nanoparticle test (Chunap) to concentrate, preserve and detect T. cruzi antigens in urine for early, non-invasive diagnosis of congenital Chagas disease.

Methodology/Principal Findings

This is a proof-of-concept study of Chunap for the early diagnosis of congenital Chagas disease. Poly N-isopropylacrylamide nano-particles functionalized with trypan blue were synthesized by precipitation polymerization and characterized with photon correlation spectroscopy. We evaluated the ability of the nanoparticles to capture, concentrate and preserve T. cruzi antigens. Urine samples from congenitally infected and uninfected infants were then concentrated using these nanoparticles. The antigens were eluted and detected by Western Blot using a monoclonal antibody against T. cruzi lipophosphoglycan. The nanoparticles concentrate T. cruzi antigens by 100 fold (western blot detection limit decreased from 50 ng/ml to 0.5 ng/ml). The sensitivity of Chunap in a single specimen at one month of age was 91.3% (21/23, 95% CI: 71.92%–98.68%), comparable to PCR in two specimens at 0 and 1 month (91.3%) and significantly higher than microscopy in two specimens (34.8%, 95% CI: 16.42%–57.26%). Chunap specificity was 96.5% (71/74 endemic, 12/12 non-endemic specimens). Particle-sequestered T. cruzi antigens were protected from trypsin digestion.

Conclusion/Significance

Chunap has the potential to be developed into a simple and sensitive test for the early diagnosis of congenital Chagas disease.  相似文献   
70.
While campaigns of vaccination against SARS-CoV-2 are underway across the world, communities face the challenge of a fair and effective distribution of a limited supply of doses. Current vaccine allocation strategies are based on criteria such as age or risk. In the light of strong spatial heterogeneities in disease history and transmission, we explore spatial allocation strategies as a complement to existing approaches. Given the practical constraints and complex epidemiological dynamics, designing effective vaccination strategies at a country scale is an intricate task. We propose a novel optimal control framework to derive the best possible vaccine allocation for given disease transmission projections and constraints on vaccine supply and distribution logistics. As a proof-of-concept, we couple our framework with an existing spatially explicit compartmental COVID-19 model tailored to the Italian geographic and epidemiological context. We optimize the vaccine allocation on scenarios of unfolding disease transmission across the 107 provinces of Italy, from January to April 2021. For each scenario, the optimal solution significantly outperforms alternative strategies that prioritize provinces based on incidence, population distribution, or prevalence of susceptibles. Our results suggest that the complex interplay between the mobility network and the spatial heterogeneities implies highly non-trivial prioritization strategies for effective vaccination campaigns. Our work demonstrates the potential of optimal control for complex and heterogeneous epidemiological landscapes at country, and possibly global, scales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号