首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   835篇
  免费   109篇
  国内免费   2篇
  946篇
  2022年   8篇
  2021年   6篇
  2020年   5篇
  2019年   14篇
  2018年   14篇
  2017年   17篇
  2016年   19篇
  2015年   37篇
  2014年   36篇
  2013年   30篇
  2012年   65篇
  2011年   53篇
  2010年   38篇
  2009年   35篇
  2008年   43篇
  2007年   45篇
  2006年   43篇
  2005年   56篇
  2004年   64篇
  2003年   45篇
  2002年   38篇
  2001年   9篇
  2000年   9篇
  1999年   16篇
  1998年   9篇
  1997年   7篇
  1996年   9篇
  1995年   5篇
  1994年   11篇
  1993年   9篇
  1992年   12篇
  1991年   4篇
  1990年   4篇
  1989年   5篇
  1988年   4篇
  1987年   6篇
  1986年   5篇
  1985年   10篇
  1984年   16篇
  1983年   5篇
  1982年   6篇
  1981年   5篇
  1980年   9篇
  1979年   14篇
  1978年   8篇
  1977年   4篇
  1976年   10篇
  1973年   3篇
  1972年   4篇
  1969年   3篇
排序方式: 共有946条查询结果,搜索用时 15 毫秒
91.
Sphingolipids are considered to play a key role in protein sorting and membrane trafficking. In melanocytic cells, sorting of lysosomal and melanosomal proteins requires the sphingolipid glucosylceramide (GlcCer). This sorting information is located in the lumenal domain of melanosomal proteins. We found that two processes dependent on lumenal pH, protein sialylation and lysosomal acid lipase (LAL) activity were aberrant in GM95 melanocyte cells, which do not produce glycosphingolipids. Using fluorescence lifetime imaging microscopy (FLIM), we found that the lumenal pH in the trans-Golgi network and lysosomes of wild-type melanocyte MEB4 cells are >1 pH unit lower than GM95 cells and fibroblasts. In addition to the lower pH found in vivo, the in vitro activity of the proton pump, the vacuolar-type H(+) -translocating ATPase (V-ATPase), was twofold higher in MEB4 compared to GM95 cells. The apparent K(i) for inhibition of the V-ATPase by concanamycin A and archazolid A, which share a common binding site on the c-ring, was lower in glycosphingolipid-deficient GM95 cells. No difference between the MEB4 and GM95 cells was found for the V-ATPase inhibitors apicularen A and salicylihalimide. We conclude that hyperacidification in MEB4 cells requires glycosphingolipids and propose that low pH is necessary for protein sorting and melanosome biogenesis. Furthermore, we suggest that glycosphingolipids are indirectly involved in protein sorting and melanosome biogenesis by stimulating the proton pump, possibly through binding of GlcCer. These experiments establish, for the first time, a link between pH, glycosphingolipids and melanosome biogenesis in melanocytic MEB4 cells, to suggest a role for glycosphingolipids in hyperacidification in melanocytes.  相似文献   
92.
93.
Biotin (vitamin B7) is involved in a wide range of essential biochemical reactions and a crucial micronutrient that is vital for many pro- and eukaryotic organisms. The few biotin measurements in the world’s oceans show that availability is subject to strong fluctuations. Numerous marine microorganisms exhibit biotin auxotrophy and therefore rely on supply by other organisms. Desthiobiotin is the primary precursor of biotin and has recently been detected at concentrations similar to biotin in seawater. The last enzymatic reaction in the biotin biosynthetic pathway converts desthiobiotin to biotin via the biotin synthase (BioB). The role of desthiobiotin as a precursor of biotin synthesis in microbial systems, however, is largely unknown. Here we demonstrate experimentally that bacteria can overcome biotin auxotrophy if they retain the bioB gene and desthiobiotin is available. A genomic search of 1068 bacteria predicts that the biotin biosynthetic potential varies greatly among different phylogenetic groups and that 20% encode solely bioB and thus can potentially overcome biotin auxotrophy. Many Actino- and Alphaproteobacteria cannot synthesize biotin de novo, but some possess solely bioB, whereas the vast majority of Gammaproteobacteria and Flavobacteriia exhibit the last four crucial biotin synthesis genes. We detected high intra- and extracellular concentrations of the precursor relative to biotin in the prototrophic bacterium, Vibrio campbellii, with extracellular desthiobiotin reaching up to 1.09 ± 0.15*106 molecules per cell during exponential growth. Our results provide evidence for the ecological role of desthiobiotin as an escape route to overcome biotin auxotrophy for bacteria in the ocean and presumably in other ecosystems.Subject terms: Water microbiology, Ecosystem ecology, Marine microbiology  相似文献   
94.

Background

Alcohol has been linked to health disparities between races in the US; however, race-specific alcohol-attributable mortality has never been estimated. The objective of this article is to estimate premature mortality attributable to alcohol in the US in 2005, differentiated by race, age and sex for people 15 to 64 years of age.

Methods and Findings

Mortality attributable to alcohol was estimated based on alcohol-attributable fractions using indicators of exposure from the National Epidemiologic Survey on Alcohol and Related Conditions and risk relations from the Comparative Risk Assessment study. Consumption data were corrected for undercoverage (the observed underreporting of alcohol consumption when using survey as compared to sales data) using adult per capita consumption from WHO databases. Mortality data by cause of death were obtained from the US Department of Health and Human Services. For people 15 to 64 years of age in the US in 2005, alcohol was responsible for 55,974 deaths (46,461 for men; 9,513 for women) representing 9.0% of all deaths, and 1,288,700 PYLL (1,087,280 for men; 201,420 for women) representing 10.7% of all PYLL. Per 100,000 people, this represents 29 deaths (29 for White; 40 for Black; 82 for Native Americans; 6 for Asian/Pacific Islander) and 670 PYLL (673 for White; 808 for Black; 1,808 for Native American; 158 for Asian/Pacific Islander). Sensitivity analyses showed a lower but still substantial burden without adjusting for undercoverage.

Conclusions

The burden of mortality attributable to alcohol in the US is unequal among people of different races and between men and women. Racial differences in alcohol consumption and the resulting harms explain in part the observed disparities in the premature mortality burden between races, suggesting the need for interventions for specific subgroups of the population such as Native Americans.  相似文献   
95.
In petals of Silene dioica plants, an enzyme has been demonstrated which catalyses the transfer of the arabinose moiety of UDP-arabinose to the hydroxyl group on the 2″-position of the carbon-carbon bound glucose of isovitexin. The presence of this arabinosyltransferase activity is controlled by the dominant allele glA. Maximal activity takes place at pH 7.2–7.5; the reaction is stimulated by the divalent metal ions Mg and Mn. For optimal solubilization of the enzyme, Triton X-100 is necessary. Substrate specificity and kinetic behaviour have been investigated.  相似文献   
96.
Flavour development in dairy fermentations, most notably cheeses, results from a series of (bio)chemical processes in which the starter cultures provide the enzymes. Particularly the enzymatic degradation of proteins (caseins) leads to the formation of key-flavour components, which contribute to the sensory perception of dairy products. More specifically, caseins are degraded into peptides and amino acids and the latter are major precursors for volatile aroma compounds. In particular, the conversion of methionine, the aromatic and the branched-chain amino acids are crucial. A lot of research has focused on the degradation of caseins into peptides and free amino acids, and more recently, enzymes involved in the conversion of amino acids were identified. Most data are generated on Lactococcus lactis, which is the predominant organism in starter cultures used for cheese-making, but also Lactobacillus, Streptococcus, Propionibacterium and species used for surface ripening of cheeses are characterised in their flavour-forming capacity. In this paper, various enzymes and pathways involved in flavour formation will be highlighted and the impact of these findings for the development of industrial starter cultures will be discussed.  相似文献   
97.
The biochemical pathway for formation of branched-chain aldehydes, which are important flavor compounds derived from proteins in fermented dairy products, consists of a protease, peptidases, a transaminase, and a branched-chain alpha-keto acid decarboxylase (KdcA). The activity of the latter enzyme has been found only in a limited number of Lactococcus lactis strains. By using a random mutagenesis approach, the gene encoding KdcA in L. lactis B1157 was identified. The gene for this enzyme is highly homologous to the gene annotated ipd, which encodes a putative indole pyruvate decarboxylase, in L. lactis IL1403. Strain IL1403 does not produce KdcA, which could be explained by a 270-nucleotide deletion at the 3' terminus of the ipd gene encoding a truncated nonfunctional decarboxylase. The kdcA gene was overexpressed in L. lactis for further characterization of the decarboxylase enzyme. Of all of the potential substrates tested, the highest activity was observed with branched-chain alpha-keto acids. Moreover, the enzyme activity was hardly affected by high salinity, and optimal activity was found at pH 6.3, indicating that the enzyme might be active under cheese ripening conditions.  相似文献   
98.
99.
Many viruses achieve reversible attachment to sialic acid (Sia) by encoding envelope glycoproteins with receptor-binding and receptor-destroying activities. Toroviruses and group 2 coronaviruses bind to O-acetylated Sias, presumably via their spike proteins (S), whereas other glycoproteins, the hemagglutinin-esterases (HE), destroy Sia receptors by de-O-acetylation. Here, we present a comprehensive study of these enzymes. Sialate-9-O-acetylesterases specific for 5-N-acetyl-9-O-acetylneuraminic acid, described for bovine and human coronaviruses, also occur in equine coronaviruses and in porcine toroviruses. Bovine toroviruses, however, express novel sialate-9-O-acetylesterases, which prefer the di-O-acetylated substrate 5-N-acetyl-7(8),9-di-O-acetylneuraminic acid. Whereas most rodent coronaviruses express sialate-4-O-acetylesterases, the HE of murine coronavirus DVIM cleaves 9-O-acetylated Sias. Under the premise that HE specificity reflects receptor usage, we propose that two types of Sias serve as initial attachment factors for coronaviruses in mice. There are striking parallels between orthomyxo- and nidovirus biology. Reminiscent of antigenic shifts in orthomyxoviruses, rodent coronaviruses exchanged S and HE sequences through recombination to extents not appreciated before. As for orthomyxovirus reassortants, the fitness of nidovirus recombinant offspring probably depends both on antigenic properties and on compatibility of receptor-binding and receptor-destroying activities.  相似文献   
100.
Malonate semialdehyde decarboxylase (MSAD) from Pseudomonas pavonaceae 170 is a tautomerase superfamily member that converts malonate semialdehyde to acetaldehyde by a mechanism utilizing Pro-1 and Arg-75. Pro-1 and Arg-75 have also been implicated in the hydratase activity of MSAD in which 2-oxo-3-pentynoate is processed to acetopyruvate. Crystal structures of MSAD (1.8 A resolution), the P1A mutant of MSAD (2.7 A resolution), and MSAD inactivated by 3-chloropropiolate (1.6 A resolution), a mechanism-based inhibitor activated by the hydratase activity of MSAD, have been determined. A comparison of the P1A-MSAD and MSAD structures reveals little geometric alteration, indicating that Pro-1 plays an important catalytic role but not a critical structural role. The structures of wild-type MSAD and MSAD covalently modified at Pro-1 by 3-oxopropanoate, the adduct resulting from the incubation of MSAD and 3-chloropropiolate, implicate Asp-37 as the residue that activates a water molecule for attack at C-3 of 3-chloropropiolate to initiate a Michael addition of water. The interactions of Arg-73 and Arg-75 with the C-1 carboxylate group of the adduct suggest these residues polarize the alpha,beta-unsaturated acid and facilitate the addition of water. On the basis of these structures, a mechanism for the inactivation of MSAD by 3-chloropropiolate can be formulated along with mechanisms for the decarboxylase and hydratase activities. The results also provide additional evidence supporting the hypothesis that MSAD and trans-3-chloroacrylic acid dehalogenase, a tautomerase superfamily member preceding MSAD in the trans-1,3-dichloropropene degradation pathway, diverged from a common ancestor but retained the key elements for the conjugate addition of water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号