首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   12篇
  2021年   7篇
  2020年   2篇
  2017年   1篇
  2016年   5篇
  2015年   8篇
  2014年   10篇
  2013年   13篇
  2012年   11篇
  2011年   14篇
  2010年   8篇
  2009年   10篇
  2008年   13篇
  2007年   15篇
  2006年   11篇
  2005年   16篇
  2004年   13篇
  2003年   10篇
  2002年   16篇
  2001年   6篇
  2000年   5篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1982年   2篇
  1981年   5篇
  1980年   2篇
  1978年   2篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
  1964年   2篇
  1961年   1篇
  1960年   1篇
排序方式: 共有255条查询结果,搜索用时 15 毫秒
71.
We expressed the main surface antigen of Plasmodium falciparum sporozoites, the circumsporozoite protein (CSP), in High Five (Trichoplusia ni) insect cells using the baculovirus system. Significant amounts of the recombinant protein could be obtained, as judged by SDS-PAGE, Western blot, and immunofluorescence analysis. The cellular localization for recombinant CSP was determined by immunofluorescence. The high fluorescence signal of the permeabilized cells, relative to that of fixed nonpermeabilized cells, revealed a clear intracellular localization of this surface antigen. Analysis of possible posttranslational modifications of CSP showed that this recombinant protein is only N-glycosylated in the baculovirus system. Although DNA-sequence analysis revealed a GPI-cleavage/attachment site, no GPI anchor could be demonstrated. These analyses show that the glycosylation status of this recombinant protein may not reflect its native form in P. falciparum. The impact of these findings on vaccine development will be discussed.  相似文献   
72.
73.
Nitric oxide (NO) is generated intracellularly from L-arginine by the action of the enzyme nitric oxide synthase (NOS). The present investigation demonstrates immunoreactivity against NOS and nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase activity in nerve cells and fibers of the reproductive system of the female mouse. The density of nerve fibers staining for NOS varied among different genital organs. The ovary and Fallopian tube were devoid of NOS-positive nerves. The uterine horns received sparse innervation by NOS-containing nerve fibers. The most abundant NOergic innervation was found in the uterine cervix and vagina, where the nerve fibers ran parallel to the smooth muscle bundles and beneath the epithelium; they also accompanied intramural blood vessels. The vaginal muscular wall contained single or groups of NOS-reactive nerve cells. Clusters of NOS-containing neurons were located in Frankenhäuser's ganglion at the cervico-vaginal junction. NO may therefore act as a transmitter in the nervous control of the female reproductive tract.  相似文献   
74.
The purification of low-abundance protein complexes and detection of in vivo protein–protein interactions in complex biological samples remains a challenging task. Here, we devised crosslinking and tandem affinity purification coupled to mass spectrometry (XL–TAP–MS), a quantitative proteomics approach for analyzing tandem affinity-purified, crosslinked protein complexes from plant tissues. We exemplarily applied XL–TAP–MS to study the MKK2–Mitogen-activated protein kinase (MPK4) signaling module in Arabidopsis thaliana. A tandem affinity tag consisting of an in vivo-biotinylated protein domain flanked by two hexahistidine sequences was adopted to allow for the affinity-based isolation of formaldehyde–crosslinked protein complexes under fully denaturing conditions. Combined with 15N stable isotopic labeling and tandem MS we captured and identified a total of 107 MKK2–MPK4 module-interacting proteins. Consistent with the role of the MPK signaling module in plant immunity, many of the module-interacting proteins are involved in the biotic and abiotic stress response of Arabidopsis. Validation of binary protein–protein interactions by in planta split-luciferase assays and in vitro kinase assays disclosed several direct phosphorylation targets of MPK4. Together, the XL–TAP–MS approach purifies low abundance protein complexes from biological samples and discovers previously unknown protein–protein interactions.

XL–TAP–MS: a novel technique that allows purification of crosslinked, low abundant protein complexes from plant tissues under denatured conditions and detection of in vivo protein–protein interactions.  相似文献   
75.
LOH11A is a region of Chromosome (Chr) 11p15.5 where 75% of lung cancers show loss of heterozygosity (LOH). Clinical and cell biological studies suggest that LOH11A contains a tumor/metastasis suppressor gene. We have mapped this region (650 kb) using overlapping genomic P1/PAC/BAC clones, and one of the genes that we have identified is RRM1. This gene encodes the large subunit (M1) of ribonucleotide reductase, the heterodimeric enzyme that catalyzes the rate-limiting step in deoxyribonucleotide synthesis. By comparing our genomic sequences with the previously published cDNA, we have found that the human gene is composed of 19 exons. It is oriented telomere to centromere and is Alu rich. In order to verify that RRM1 maps within the boundaries of LOH11A, we assessed the frequency of LOH at a SacI polymorphism within intron IX of the gene. We observed LOH in 48% (15/31) of informative lung tumor specimens. To determine whether RRM1 was mutated in tumors, SSCP analysis of the 19 RRM1 exons was performed. No mutations were revealed in 12 pairs of normal and tumor DNA samples. Immunoblots on protein extracts from normal/tumor pairs indicated that a protein of the expected size was present in both. Our conclusion is that RRM1 lies within the LOH11A region, but that its exons are not mutated in tumors. The potential for RRM1 to act as a tumor suppressor is discussed. Received: 18 September 1998 / Accepted: 10 May 1999  相似文献   
76.
Recently, we have demonstrated that tumor-specific CD4+ Th cell responses can be rapidly induced in advanced melanoma patients by vaccination with peptide-loaded monocyte-derived dendritic cells. Most patients showed a T cell reactivity against a melanoma Ag 3 (MAGE-3) peptide (MAGE-3(243-258)), which has been previously found to be presented by HLA-DP4 molecules. To analyze the functional and specificity profile of this in vivo T cell response in detail, peptide-specific CD4+ T cell clones were established from postvaccination blood samples of two HLA-DP4 patients. These T cell clones recognized not only peptide-loaded stimulator cells but also dendritic cells loaded with a recombinant MAGE-3 protein, demonstrating that these T cells were directed against a naturally processed MAGE-3 epitope. The isolated CD4+ Th cells showed a typical Th1 cytokine profile upon stimulation. From the first patient several CD4+ T cell clones recognizing the antigenic peptide used for vaccination in the context of HLA-DP4 were obtained, whereas we have isolated from the second patient CD4+ T cell clones which were restricted by HLA-DQB1*0604. Analyzing a panel of truncated peptides revealed that the CD4+ T cell clones recognized different core epitopes within the original peptide used for vaccination. Importantly, a DP4-restricted T cell clone was stimulated by dendritic cells loaded with apoptotic or necrotic tumor cells and even directly recognized HLA class II- and MAGE-3-expressing tumor cells. Moreover, these T cells exhibited cytolytic activity involving Fas-Fas ligand interactions. These findings support that vaccination-induced CD4+ Th cells might play an important functional role in antitumor immunity.  相似文献   
77.
Jerz G  Waibel R  Achenbach H 《Phytochemistry》2005,66(14):1698-1706
Phytochemical investigation of root and stem-bark of the West African medicinal plant Ongokea gore resulted in the isolation of four novel flavonoids with an unusual cyclohexyl substituent instead of the common aromatic ring B. The structures of the isolated compounds were elucidated by spectroscopic methods, mainly 1D and 2D NMR, and subsequently, the structures were corroborated by chemical conversion to (-)-(S)-sakuranetin. The absolute configurations, and preferred conformations were determined by NOE experiments and CD measurements.  相似文献   
78.
An image based two-dimensional (2-D) reference map of very alkaline yeast cell proteins was established by using immobilized pH gradients (IPG) up to pH 12 (IPG 6-12, IPG 9-12 and IPG 10-12) for 2-D electrophoresis and by using matrix-assisted laser desorption/ionization-time of flight mass spectrometry peptide mass fingerprinting for spot identification. Up to now 106 proteins with theoretical isoelectric points up to pH 11.15 and molecular mass between 7.5 and 115 kDa were localized and identified. Additionally, due to the improved resolution of steady-state isoelectric focussing with IPGs, even low copy number proteins with codon bias below 0.02 were detected and identified.  相似文献   
79.
Prenylated proteins are involved in the regulation of DNA replication and cell cycling and have important roles in the regulation of cell proliferation. Protein farnesyltransferase and protein geranylgeranyltransferase are the two enzymes responsible for catalysing isoprene lipid modifications. Recently these enzymes have been targets for the development of cancer chemotherapeutics. Using metabolic labelling we identified isoprenylated proteins which suggests the presence of protein farnesyltransferase in Toxoplasma gondii. T. gondii protein farnesyltransferase is heat-labile and requires Mg(2+) and Zn(2+) ions for full activity. Peptidomimetic analogues as well as short synthetic peptides were tested in vitro as possible competitors for farnesyltransferase substrates. We found that the synthetic peptide (KTSCVIA) specifically inhibited T. gondiiprotein farnesyltransferase but not mammalian (HeLa cells) farnesyltransferase. Therefore this study suggests the possible development of specific inhibitors of T. gondiiprotein farnesyltransferase as an approach to parasitic protozoa therapy.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号