首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   16篇
  2022年   1篇
  2020年   1篇
  2019年   4篇
  2018年   1篇
  2017年   3篇
  2016年   4篇
  2015年   7篇
  2014年   8篇
  2013年   10篇
  2012年   10篇
  2011年   6篇
  2010年   6篇
  2009年   7篇
  2008年   8篇
  2007年   7篇
  2006年   11篇
  2005年   2篇
  2004年   8篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   4篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1977年   4篇
  1976年   1篇
  1975年   3篇
  1974年   2篇
  1972年   1篇
  1971年   2篇
  1969年   2篇
排序方式: 共有163条查询结果,搜索用时 15 毫秒
21.
Analysis of suppressors that alleviate the acute envelope stress phenotype of a Δ bamB Δ degP strain of Escherichia coli identified a novel protein MzrA and pleiotropic envZ mutations. Genetic evidence shows that overexpression of MzrA – formerly known as YqjB and EcfM – modulates the activity of EnvZ/OmpR similarly to pleiotropic EnvZ mutants and alter porin expression. However, porin expression in strains devoid of MzrA or overexpressing it is still sensitive to medium osmolarity, pH and procaine, all of which modulate EnvZ/OmpR activities. Thus, MzrA appears to alter the output of the EnvZ/OmpR system but not its ability to receive and respond to various environmental signals. Localization and topology experiments indicate that MzrA is a type II membrane protein, with its N-terminus exposed in the cytoplasm and C-terminus in the periplasm. Bacterial two-hybrid experiments determined that MzrA specifically interacts with EnvZ but not with OmpR or the related membrane sensor kinase, CpxA. This and additional genetic and biochemical evidence suggest that the interaction of MzrA with EnvZ would either enhance EnvZ's kinase activity or reduce its phosphatase activity, thus elevating the steady state levels of OmpR∼P. Furthermore, our data show that MzrA links the two-component envelope stress response regulators, CpxA/CpxR and EnvZ/OmpR.  相似文献   
22.
Mucin-type O-gly co sy la tion is initiated by a large family of UDP-GalNAc:polypeptide α-N-acetylgalactosaminyltransferases (ppGalNAc Ts) that transfer GalNAc from UDP-GalNAc to the Ser and Thr residues of polypeptide acceptors. Some members of the family prefer previously gly co sylated peptides (ppGalNAc T7 and T10), whereas others are inhibited by neighboring gly co sy la tion (ppGalNAc T1 and T2). Characterizing their peptide and glycopeptide substrate specificity is critical for understanding the biological role and significance of each isoform. Utilizing a series of random peptide and glycopeptide substrates, we have obtained the peptide and glycopeptide specificities of ppGalNAc T10 for comparison with ppGalNAc T1 and T2. For the glycopeptide substrates, ppGalNAc T10 exhibited a single large preference for Ser/Thr-O-GalNAc at the +1 (C-terminal) position relative to the Ser or Thr acceptor site. ppGalNAc T1 and T2 revealed no significant enhancements suggesting Ser/Thr-O-GalNAc was inhibitory at most positions for these isoforms. Against random peptide substrates, ppGalNAc T10 revealed no significant hydrophobic or hydrophilic residue enhancements, in contrast to what has been reported previously for ppGalNAc T1 and T2. Our results reveal that these transferases have unique peptide and glycopeptide preferences demonstrating their substrate diversity and their likely roles ranging from initiating transferases to filling-in transferases.Mucin-type O-glycosylation is a common post-translational modification of secreted and membrane-associated proteins. O-Glycan biosynthesis is initiated by the transfer of GalNAc from UDP-GalNAc to the hydroxyl groups of serine or threonine residues in a polypeptide, catalyzed by a family of polypeptide N-α-acetylgalactosaminyltransferases (ppGalNAc Ts).5 To date, 16 mammalian members have been reported in the literature (116) with a total of at least 20 members currently present in the human genome data base. Multiple members of the ppGalNAc T family have also been identified in Drosophila (9, 10, 14), Caenorhabditis elegans (3, 8), and single and multicellular organisms (1720). Several members show close sequence orthologues across species suggesting that the ppGalNAc Ts are responsible for biologically significant functions that have been conserved during evolution. For example, in Drosophila four isoforms have close sequence orthologues to the mammalian transferases. Of the two that have been recently compared, nearly identical peptide substrate specificities have been observed between the fly and mammals, suggesting common but presently unknown functions preserved across these diverse species (21).Recently, several ppGalNAc T isoforms have been shown to be important for normal development or cellular processes. For example, inactive mutations in the fly PGANT35A (the T11 orthologue in mammals) are lethal because of the disruption of the tracheal tube structures (9, 10, 22), whereas mutations in PGANT3 alter epithelial cell adhesion in the Drosophila wing blade resulting in wing blistering (23). In humans, mutations in ppGalNAc T3 are associated with familial tumoral calcinosis, the result of the abnormal processing and secretion of the phosphaturic factor FGF23 (24, 25). Human ppGalNAc T14 has been suggested to modulate apoptotic signaling in tumor cells by its glycosylation of the proapoptotic receptors DLR4 and DLR5 (26), and very recently the specific O-glycosylation of the TGFB-II receptor (ActR-II) by the GalNTL1 has been shown to modulate its signaling in development (16).Historically, the major targets of the ppGalNAc Ts have been thought to be heavily O-glycosylated mucin domains of membrane and secreted glycoproteins. Such domains typically contain 15–30% Ser or Thr, which are highly (>50%) substituted by GalNAc. One question in the field is as follows. How is this high degree of peptide core glycosylation achieved and is it related to the large number of ppGalNAc isoforms, some of which may even have specific mucin domain preferences? Interestingly, some members of the ppGalNAc T family are known to prefer substrates that have been previously modified with O-linked GalNAc on nearby Ser/Thr residues, hence having so-called glycopeptide or filling-in activities, i.e. ppGalNAc T7 and T10 (8, 2729). Others simply possess altered preferences against glycopeptide substrates, i.e. ppGalNAc T2 and T4 (3033), or may be inhibited by neighboring glycosylation, i.e. ppGalNAc T1 and T2 (29, 34, 35). These latter transferases have been called early or initiating transferases, preferring nonglycosylated over-glycosylated substrates. Presently, little is known about which factors dictate the different peptide/glycopeptide specificities among the ppGalNAc Ts.The ppGalNAc Ts consist of an N-terminal catalytic domain tethered by a short linker to a C-terminal ricin-like lectin domain containing three recognizable carbohydrate-binding sites (36). Because ppGalNAc T7 and T10 prefer to transfer GalNAc to glycopeptide acceptors, it has been widely assumed that their C-terminal lectin domains would play significant roles in this activity, as has been demonstrated for other family members (27, 28, 32). Recently, Kubota et al. (37) solved the crystal structure of ppGalNAc T10 in complex with Ser-GalNAc specifically bound to its lectin domain. In this work (37), the authors further demonstrated that a T10 lectin domain mutant indeed had altered specificity against GalNAc-containing glycopeptide substrates when the acceptor Ser/Thr site was distal from the pre-existing glycopeptide GalNAc site. However, it was also observed that the lectin mutant still possessed relatively unaltered glycopeptide activity when the acceptor Ser/Thr site was directly N-terminal of a pre-existing glycopeptide GalNAc site. Kubota et al. (37) therefore concluded that for ppGalNAc T10, both its lectin and indeed its catalytic domain must contain distinct peptide GalNAc recognition sites. In support of this, Raman et al. (33) have shown that the complete removal of the ppGalNAc T10 lectin domain only slightly alters its specificity against distal glycopeptide substrates while showing no difference in its ability to glycosylate residues directly N-terminal of an existing site of glycosylation. Thus, it seems that the catalytic domain of ppGalNAc T10 may have specific requirements for a peptide O-linked GalNAc in at least the +1 position (toward the C terminus) of residues being glycosylated. As no systematic determination of the glycopeptide binding properties of the ppGalNAc Ts catalytic domain has been performed, it is unknown whether additional GalNAc peptide-binding sites exist in T10 or, for that matter, any of the other ppGalNAc Ts.We have recently reported the use of oriented random peptide substrates, GAGA(X)nT(X)nAGAGK (where X indicates randomized amino acid positions and n = 3 and 5) for determining the peptide substrate specificities of mammalian ppGalNAc T1, T2, and their fly orthologues (21, 38). In the present work, we extend this approach to the determination of the catalytic domain glycopeptide (Ser/Thr-O-GalNAc) substrate preferences for ppGalNAc T1, T2, and T10 employing two n = 4 oriented random glycopeptide libraries (21). Interestingly, ppGalNAc T10 displays few significant enhancements and specifically lacks the Pro residue enhancements observed for ppGalNAc T1 and T2. These findings further demonstrate the vast substrate diversity of the catalytic domains of the ppGalNAc T family of transferases.

TABLE 1

ppGalNAc transferase random substrates utilized in this workPVI, PVII, GP-I, and GP-II random (glyco)peptide substrates.
PeptideSequenceNo. of unique sequences
GAGAXXXXXTXXXXXAGAGK
P-VIX = G, A, P, V, L, Y, E, Q, R, H10 × 109
P-VIIX = G, A, P, I, M, F, D, N, R, K10 × 109

GAGAXXXXTXXXXAGAG
GP-IX = G, A, P, V, I, F, Y, E, D, N, R, K, H, and Ser-O-α-GalNAc1.47 × 109

GAGAXXXX(Thr-O-α-GalNAc)XXXXAGAG
GP-IIX = G, A, P, V, I, F, Y, E, D, N, R, K, H, S1.47 × 109
Open in a separate window  相似文献   
23.
Marine algae of the genus Nannochloropsis are promising producers of biofuel precursors and nutraceuticals and are also harvested commercially for aquaculture feed. We have used quick-freeze, deep-etch electron microscopy, Fourier transform infrared spectroscopy, and carbohydrate analyses to characterize the architecture of the Nannochloropsis gaditana (strain CCMP 526) cell wall, whose recalcitrance presents a significant barrier to biocommodity extraction. The data indicate a bilayer structure consisting of a cellulosic inner wall (∼75% of the mass balance) protected by an outer hydrophobic algaenan layer. Cellulase treatment of walls purified after cell lysis generates highly enriched algaenan preparations without using the harsh chemical treatments typically used in algaenan isolation and characterization. Nannochloropsis algaenan was determined to comprise long, straight-chain, saturated aliphatics with ether cross-links, which closely resembles the cutan of vascular plants. Chemical identification of >85% of the isolated cell wall mass is detailed, and genome analysis is used to identify candidate biosynthetic enzymes.  相似文献   
24.

Background & Objective

Currently, a major clinical challenge is to distinguish between chronic liver disease caused by metabolic syndrome (non-alcoholic fatty liver disease, NAFLD) from that caused by long term or excessive alcohol consumption (ALD). The etiology of severe liver disease affects treatment options and priorities for liver transplantation and organ allocation. Thus we compared physiologically similar NAFLD and ALD patients to detect biochemical differences for improved separation of these mechanistically overlapping etiologies.

Methods

In a cohort of 31 NAFLD patients with BMI below 30 and a cohort of ALD patient with (ALDC n = 51) or without cirrhosis (ALDNC n = 51) serum transaminases, cell death markers and (adipo-)cytokines were assessed. Groups were compared with One-way ANOVA and Tukey''s correction. Predictive models were built by machine learning techniques.

Results

NAFLD, ALDNC or ALDC patients did not differ in demographic parameters. The ratio of alanine aminotransferase/aspartate aminotransferase - common serum parameters for liver damage - was significantly higher in the NAFLD group compared to both ALD groups (each p<0.0001). Adiponectin and tumor necrosis factor(TNF)-alpha were significantly lower in NAFLD than in ALDNC (p<0.05) or ALDC patients (p<0.0001). Significantly higher serum concentrations of cell death markers, hyaluronic acid, adiponectin, and TNF-alpha (each p<0.0001) were found in ALDC compared to ALDNC. Using machine learning techniques we were able to discern NAFLD and ALDNC (up to an AUC of 0.9118±0.0056) or ALDC and ALDNC (up to an AUC of 0.9846±0.0018), respectively.

Conclusions

Machine learning techniques relying on ALT/AST ratio, adipokines and cytokines distinguish NAFLD and ALD. In addition, severity of ALD may be non-invasively diagnosed via serum cytokine concentrations.  相似文献   
25.

Background/Aims

Emerging data links different aspects of lipid metabolism to liver regeneration. In patients with acute liver failure (ALF), low levels of lipids may correlate with disease severity. Thus, we determined whether there is an etiology-specific link between lipid levels in patients suffering from ALF and aimed to investigate an effect of lipid levels on the prognosis of ALF.

Methods

In this retrospective single center study, we reviewed 89 consecutive ALF patients, who met the criteria of the “Acute Liver Failure Study Group”. Patient characteristics, clinical data and laboratory parameters were individually analyzed at admission and correlated with the patients'' outcome after a four week follow up. Possible endpoints were either discharge, or death or liver transplantation.

Results

High-density lipoprotein (HDL), cholesterol and triglyceride levels were significantly lower in patients who died or required a liver transplant. HDL levels were significantly higher in patients with ALF caused by acetaminophen intoxication, compared to fulminant HBV infection or drug induced liver injury. HDL levels correlated with hepatic injury by ALT levels, and Albumin, and inversely correlated with the MELD score, INR, and bilirubin.

Conclusion

In our cohort of patients with ALF, we could show that HDL and cholesterol are suppressed. In addition novel etiology specific patterns between acteminophen and non-acteminophen induced liver failure were detected for serum lipid components. Further studies are needed to address the role of cholesterol and lipid metabolism and the according pathways in different etiologies of ALF.  相似文献   
26.
Recently, several colony PCR methods have been developed to simplify DNA isolation procedure and facilitate PCR-based colony screening efforts in microalgae. A main drawback of current protocols is that cell collection, disruption, and genomic DNA extraction are required preceding the PCR step, making the colony PCR process laborious and costly. In the present study, we have developed a novel procedure that eliminates any steps of DNA extraction and allows the colony screening to be performed in a single PCR tube: algal cells (as low as 5,000) from agar plates or liquid cultures were directly transferred into a PCR tube containing 2× PCR buffer and boiled for 5–10 min depending on different algal strains, followed by addition of other PCR components (dNTPs, primers, and polymerase) and then subjected to conventional PCR reaction. The procedure documented here worked well not only for the model alga Chlamydomonas reinhardtii, but also for the thick-walled oleaginous strains such as Chlorella, Haematococcus, Nannochloropsis, and Scenedesmus with its efficacy independent on amplicon sizes and primer pairs. In addition, screening of Chlorella zofingiensis transformants was achieved using this method. Collectively, our single-tube colony PCR is a much simpler and more cost-effective procedure as compared to those previously reported and has broad applications including gene cloning, strain determination, and high-throughput screening of algae colonies and transformants for biomass and biofuel production.  相似文献   
27.
Placing new markers on a previously existing genetic map by using conventional methods of multilocus linkage analysis requires that a large number of reference families be genotyped. This paper presents a methodology for placing new markers on existing genetic maps by genotyping only a few individuals in a selected subset of the reference panel. We show that by identifying meiotic breakpoint events within existing genetic maps and genotyping individuals who exhibit these events, along with one nonrecombinant sibling and their parents, we can determine precise location for new markers even within subcentimorgan chromosomal regions. This method also improves detection of errors in genotyping and assists in the observation of chromosome behavior in specific regions.  相似文献   
28.
We describe a 20-point linkage analysis map of chromosome 11q22-23 that is based on genotyping 249 families (59 CEPH and 190 A-T). Monte Carlo linkage analyses of 176 ataxia-telangiectasia (A-T) families localizes the major A-T locus to the region between S1819(A4) and S1818(A2). When seven nonlinking families were excluded from subsequent analyses, a 2-lod support interval of ~500 kb was identified between S1819(A4) and S1294. No recombinants were observed between A-T and markers S384, B7, S535, or S1294. Only 17 of the international consortium families have been assigned to complementation groups. The available evidence favors either a cluster of A-T genes on chromosome 11 or intragenic defects in a single gene.  相似文献   
29.
This study assessed selected measures of cognitive function in trained cyclists who observed daylight fasting during Ramadan. Eleven cyclists volunteered to participate (age: 21.6±4.8 years, VO2max: 57.7±5.6 ml kg−1·min−1) and were followed for 2 months. Cognitive function (Cambridge Neuropsychological Test Automated Battery (CANTAB), Reaction Time index (RTI) and Rapid Visual Information Processing (RVP) tests) and sleep architecture (ambulatory EEG) were assessed: before Ramadan (BR), in the 1st week (RA1) and 4th week of Ramadan (RA4), and 2 weeks post-Ramadan (PR). Both cognitive tests were performed twice per day: before and after Ramadan at 8-10 a.m. and 4-6 p.m., and during Ramadan at 4-6 p.m. and 0-2 a.m., respectively. Training load (TL) by the rating of perceived exertion (RPE) method and wellness (Hooper index) were measured daily. If the TL increased over the study period, this variable was stable during Ramadan. The perceived fatigue and delayed onset muscle soreness (DOMS) increased at RA4. Sleep patterns and architecture showed clear disturbances, with significant increases in the number of awakenings and light sleep durations during Ramadan (RA1 and RA4), together with decreased durations of deep and REM sleep stages at PR. RTI (simple and multiple reaction index) reaction and movement times did not vary over the study period. The RVP test showed reduced false alarms during Ramadan, suggesting reduced impulsivity. Overall accuracy significantly increased at RA1, RA4 and PR compared to baseline. At RA4, the accuracy was higher at 0-2 a.m. compared to 4-6 p.m. Despite the observed disturbances in sleep architecture, Ramadan fasting did not negatively impact the cognitive performance of trained cyclists from the Middle East.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号