首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207篇
  免费   21篇
  228篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2015年   7篇
  2014年   10篇
  2013年   7篇
  2012年   13篇
  2011年   13篇
  2010年   10篇
  2009年   9篇
  2008年   9篇
  2007年   4篇
  2006年   8篇
  2005年   5篇
  2004年   12篇
  2003年   12篇
  2002年   8篇
  2001年   11篇
  2000年   7篇
  1999年   6篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1993年   2篇
  1992年   5篇
  1991年   10篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   7篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   2篇
  1976年   3篇
  1975年   1篇
  1971年   1篇
排序方式: 共有228条查询结果,搜索用时 0 毫秒
71.
72.
Changes of the microtubule-associated protein tau are central in Alzheimer's disease (AD) and frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17). However, the functional consequence of the FTDP-17 tau mutation R406W, which causes a tauopathy clinically resembling AD, is not well understood. We find that the R406W mutation does not affect microtubule interaction but abolishes tau's membrane binding. Loss of binding is associated with decreased trapping at the tip of neurites and increased length fluctuations during process growth. Tandem affinity purification tag purification and mass spectrometry identify the calcium-regulated plasma membrane-binding protein annexin A2 (AnxA2) as a potential interaction partner of tau. Consistently, wild-type tau but not R406W tau interacts with AnxA2 in a heterologous yeast expression system. Sequestration of Ca(2+) or knockdown of AnxA2 abolishes the differential trapping of wild-type and R406W tau. We suggest that the pathological effect of the R406W mutation is caused by impaired membrane binding, which involves a functional interaction with AnxA2 as a membrane-cytoskeleton linker.  相似文献   
73.
CD44, the major cell surface receptor for hyaluronic acid (HA), was shown to localize to detergent-resistant cholesterol-rich microdomains, called lipid rafts, in fibroblasts and blood cells. Here, we have investigated the molecular environment of CD44 within the plane of the basolateral membrane of polarized mammary epithelial cells. We show that CD44 partitions into lipid rafts that contain annexin II at their cytoplasmic face. Both CD44 and annexin II were released from these lipid rafts by sequestration of plasma membrane cholesterol. Partition of annexin II and CD44 to the same type of lipid rafts was demonstrated by cross-linking experiments in living cells. First, when CD44 was clustered at the cell surface by anti-CD44 antibodies, annexin II was recruited into the cytoplasmic leaflet of CD44 clusters. Second, the formation of intracellular, submembranous annexin II-p11 aggregates caused by expression of a trans-dominant mutant of annexin II resulted in coclustering of CD44. Moreover, a frequent redirection of actin bundles to these clusters was observed. These basolateral CD44/annexin II-lipid raft complexes were stabilized by addition of GTPgammaS or phalloidin in a semipermeabilized and cholesterol-depleted cell system. The low lateral mobility of CD44 in the plasma membrane, as assessed with fluorescent recovery after photobleaching (FRAP), was dependent on the presence of plasma membrane cholesterol and an intact actin cytoskeleton. Disruption of the actin cytoskeleton dramatically increased the fraction of CD44 which could be recovered from the light detergent-insoluble membrane fraction. Taken together, our data indicate that in mammary epithelial cells the vast majority of CD44 interacts with annexin II in lipid rafts in a cholesterol-dependent manner. These CD44-containing lipid microdomains interact with the underlying actin cytoskeleton.  相似文献   
74.
75.
The first Australian record of the lily thrips, Liothrips vaneeckei Priesner, is reported from a bulb farm in Warragul South, Victoria. It is an occasional pest of Lilium bulbs, both in the field and in storage, particularly in the USA and several European countries, and is also infrequently found in considerable numbers on the corms of orchids.  相似文献   
76.
77.
78.
The RNA1 gene from Saccharomyces cerevisiae is defined by the temperature-sensitive rna1-1 mutation that interferes with the maturation and/or nucleocytoplasmic transport of RNA. We describe the purification of a 44-kDa protein from the evolutionary distant fission yeast Schizosaccharomyces pombe and the cloning and sequence analysis of the corresponding gene. Although this protein shares only 42% sequence identity with the RNA1 gene product, it represents a functional homologue because the expression of the S. pombe gene in S. cerevisiae complements the rna1-1 defect. Disruption in S. pombe of the gene encoding the 44-kDa protein, for which we propose the name S. pombe rna1p, reveals that it is essential for growth. Our analysis of purified S. pombe rna1p represents the first biochemical characterization of an RNA1 gene product and reveals that it is a monomeric protein of globular shape. Cell fractionation and immunofluorescence microscopy indicate that rna1p is a cytoplasmic protein possibly enriched in the nuclear periphery. We identify a sequence motif of 29 residues, which is rich in leucine and repeated eight times both in S. pombe and in S. cerevisiae rna1p. Similar leucine-rich repeats present in a series of other proteins, e.g., the mammalian ribonuclease/angiogenin inhibitor, adenylyl cyclase from S. cerevisiae, the toll protein from Drosophila melanogaster, and the sds22 protein phosphatase regulatory subunit from S. pombe, are thought to be involved in protein-protein interactions. Thus rna1p may act as a scaffold protein possibly interacting in the nuclear periphery with a protein ligand that could be associated with exported RNA.  相似文献   
79.
Polycystin-1 is the gene product of PKD1, the first gene identified to be causative for the condition of autosomal dominant polycystic kidney disease (ADPKD). Mutations in PKD1 are responsible for the majority of ADPKD cases worldwide. Polycystin-1 is a protein of the transient receptor potential channels superfamily, with 11 transmembrane spans and an extracellular N-terminal region of approximately 3109 amino acid residues, harboring multiple putative ligand binding domains. We demonstrate here that annexin A5 (ANXA5), a Ca(2+) and phospholipid binding protein, interacts with the N-terminal leucine-rich repeats of polycystin-1, in vitro and in a cell culture model. This interaction is direct and specific and involves a conserved sequence of the ANXA5 N-terminal domain. Using Madin-Darby canine kidney cells expressing polycystin-1 in an inducible manner we also show that polycystin-1 colocalizes with E-cadherin at cell-cell contacts and accelerates the recruitment of intracellular E-cadherin to reforming junctions. This polycystin-1 stimulated recruitment is significantly delayed by extracellular annexin A5.  相似文献   
80.
Annexins constitute a family of calcium and membrane binding proteins. As annexin A1 and A2 have previously been linked to various membrane trafficking events, we initiated this study to investigate the role of these annexins in the uptake and intracellular transport of the bacterial Shiga toxin (Stx) and the plant toxin ricin. Once endocytosed, both toxins are retrogradely transported from endosomes to the Golgi apparatus and the endoplasmic reticulum before being targeted to the cytosol where they inhibit protein synthesis. This study was performed to obtain new information both about toxin transport and the function of annexin A1 and annexin A2. Our data show that depletion of annexin A1 or A2 alters the retrograde transport of Stx but not ricin, without affecting toxin binding or internalization. Knockdown of annexin A1 increases Golgi transport of Stx, whereas knockdown of annexin A2 slightly decreases the same transport step. Interestingly, annexin A1 was found in proximity to cytoplasmic phospholipase A2 (cPLA(2)), and the basal as well as the increased Golgi transport of Stx upon annexin A1 knockdown is dependent on cPLA(2) activity. In conclusion, annexin A1 and A2 have different roles in Stx transport to the trans-Golgi network. The most prominent role is played by annexin A1 which normally works as a negative regulator of retrograde transport from the endosomes to the Golgi network, most likely by complex formation and inhibition of cPLA(2).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号