首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5999篇
  免费   437篇
  国内免费   3篇
  2021年   61篇
  2020年   33篇
  2019年   53篇
  2018年   73篇
  2017年   59篇
  2016年   105篇
  2015年   179篇
  2014年   257篇
  2013年   287篇
  2012年   333篇
  2011年   342篇
  2010年   227篇
  2009年   232篇
  2008年   295篇
  2007年   344篇
  2006年   300篇
  2005年   267篇
  2004年   269篇
  2003年   263篇
  2002年   249篇
  2001年   94篇
  2000年   95篇
  1999年   90篇
  1998年   92篇
  1997年   61篇
  1996年   62篇
  1995年   60篇
  1994年   64篇
  1993年   75篇
  1992年   93篇
  1991年   91篇
  1990年   67篇
  1989年   68篇
  1988年   71篇
  1987年   37篇
  1986年   62篇
  1985年   78篇
  1984年   50篇
  1983年   51篇
  1982年   53篇
  1981年   45篇
  1980年   42篇
  1979年   35篇
  1978年   49篇
  1976年   42篇
  1975年   41篇
  1974年   31篇
  1973年   34篇
  1971年   34篇
  1964年   28篇
排序方式: 共有6439条查询结果,搜索用时 396 毫秒
991.
992.
Plant synthetic biology is still in its infancy. However, synthetic biology approaches have been used to manipulate and improve the nutritional and health value of staple food crops such as rice, potato and maize. With current technologies, production yields of the synthetic nutrients are a result of trial and error, and systematic rational strategies to optimize those yields are still lacking. Here, we present a workflow that combines gene expression and quantitative metabolomics with mathematical modeling to identify strategies for increasing production yields of nutritionally important carotenoids in the seed endosperm synthesized through alternative biosynthetic pathways in synthetic lines of white maize, which is normally devoid of carotenoids. Quantitative metabolomics and gene expression data are used to create and fit parameters of mathematical models that are specific to four independent maize lines. Sensitivity analysis and simulation of each model is used to predict which gene activities should be further engineered in order to increase production yields for carotenoid accumulation in each line. Some of these predictions (e.g. increasing Zmlycb/Gllycb will increase accumulated β‐carotenes) are valid across the four maize lines and consistent with experimental observations in other systems. Other predictions are line specific. The workflow is adaptable to any other biological system for which appropriate quantitative information is available. Furthermore, we validate some of the predictions using experimental data from additional synthetic maize lines for which no models were developed.  相似文献   
993.
994.
995.
We performed exome sequencing for mutation discovery of an ENU (N-ethyl-N-nitrosourea)-derived mouse model characterized by significant elevated plasma alkaline phosphatase (ALP) activities in female and male mutant mice, originally named BAP014 (bone screen alkaline phosphatase #14). We identified a novel loss-of-function mutation within the Fam46a (family with sequence similarity 46, member A) gene (NM_001160378.1:c.469G>T, NP_001153850.1:p.Glu157*). Heterozygous mice of this mouse line (renamed Fam46a E157*Mhda) had significantly high ALP activities and apparently no other differences in morphology compared to wild-type mice. In contrast, homozygous Fam46a E157*Mhda mice showed severe morphological and skeletal abnormalities including short stature along with limb, rib, pelvis, and skull deformities with minimal trabecular bone and reduced cortical bone thickness in long bones. ALP activities of homozygous mutants were almost two-fold higher than in heterozygous mice. Fam46a is weakly expressed in most adult and embryonic tissues with a strong expression in mineralized tissues as calvaria and femur. The FAM46A protein is computationally predicted as a new member of the superfamily of nucleotidyltransferase fold proteins, but little is known about its function. Fam46a E157*Mhda mice are the first mouse model for a mutation within the Fam46a gene.  相似文献   
996.
997.
Malia TJ  Wagner G 《Biochemistry》2007,46(2):514-525
Bcl-2 family proteins are essential regulators of cell death and exert their primary pro- or antiapoptotic roles at the mitochondrial outer membrane. Previously, pro- and antiapoptotic Bcl-2 proteins have been shown to interact with the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane. VDAC is a 283-residue integral membrane protein that forms an aqueous pore in the outer mitochondrial membrane, through which metabolites and other small molecules pass between the cytosol and intermembrane space. The essential life-sustaining function of VDAC in metabolite trafficking is believed to be regulated by proteins of the Bcl-2 family. The protective role of antiapoptotic Bcl-xL may be through its interaction with VDAC. Here, VDAC has been expressed, purified, and refolded into a functional form amenable to NMR studies. Various biophysical experiments indicate that micelle-bound VDAC is in intermediate exchange between monomer and trimer. Using NMR spectroscopy, gel filtration, and chemical cross-linking, we obtained direct evidence for binding of Bcl-xL to VDAC in a detergent micelle system. The VDAC-interacting region of Bcl-xL was characterized by NMR with chemical shift perturbation and transferred cross-saturation. The interaction region was mapped to a putative helical hairpin motif of Bcl-xL that was found to insert into detergent micelles. Our results suggest that Bcl-xL can bind to one or two VDAC molecules forming heterodimers and heterotrimers. Our characterization of the VDAC/Bcl-xL complex offers initial structural insight into the role of antiapoptotic Bcl-xL in regulating apoptotic events in the mitochondrial outer membrane.  相似文献   
998.
Tayefeh S  Kloss T  Thiel G  Hertel B  Moroni A  Kast SM 《Biochemistry》2007,46(16):4826-4839
The functional effect of mutations near the intracellular mouth of the short viral Kcv potassium channel was studied by molecular dynamics simulations. As a model system we used the analogously mutated and truncated KirBac1.1, a channel with known crystal structure that shares genuine local sequence motifs with Kcv. By a novel simulated annealing methodology for structural averaging, information about the structure and dynamics of the intracellular mouth was extracted and complemented by Poisson-Boltzmann and 3D-RISM (reference interaction site model) integral equation theory for the determination of the K+ free energy surface. Besides the wild-type analogue of Kcv with its experimental reference activity (truncated KirBac1.1), two variants were studied: a deletion mutant where the N-terminus is further truncated by eight amino acids, showing inactivity in the Kcv reference system, and a point mutant where the kink-forming proline at position 13 is substituted by alanine, resulting in hyperactivity. The computations reveal that the change of activity is closely related to a hydrophilic intracellular constriction formed by the C-terminal residues of the monomers. Hyperactivity of the point mutant is correlated with both sterical and electrostatic factors, while inactivity of the deletion mutant is related to a loss of specific salt bridge patterns between the C- and N-terminus at the constriction and to the consequences for ion passage barriers, as revealed by integral equation theory. The cytosolic gate, however, is probably formed by the N-terminal segment up to the proline kink and not by the constriction. The results are compared with design principles found for other channels.  相似文献   
999.
1000.
Despite the fact that enteroviruses are implicated in a variety of human diseases, there is no approved therapy for the treatment of enteroviral infections. Here, a series of 2,6-dihalophenyl-substituted 1H,3H-thiazolo[3,4-a]benzimidazoles with anti-enterovirus activity is reported. The compounds elicit potent activity against coxsackievirus A9, echovirus 9 and 11 and all six strains of coxsackievirus B. A structure-activity relationship analysis revealed that the presence of substituents at position 6 of the tricyclic system positively influences the antiviral activity, whereas substitutions at position 7 are less favorable. In particular a 6-trifluoromethyl substitution leads to a substantial improvement of the antiviral activity as compared to the unsubstituted structure. Furthermore, an additional introduction of a 2-Cl, 6-F substitution on the phenyl at C-1 results in a further increase of the antiviral activity. Hence, 1-(2-chloro-6-fluorophenyl)-6-trifluoromethyl-1H,3H-thiazolo[3,4-a]benzimidazole results in a dose-dependent inhibition of viral replication with a 50% effective concentration (EC50) of 0.41 microg/ml without any detectable cytotoxicity at the highest concentration (100 microg/ml) tested.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号