首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4928篇
  免费   314篇
  国内免费   3篇
  2021年   50篇
  2020年   26篇
  2019年   39篇
  2018年   57篇
  2017年   43篇
  2016年   83篇
  2015年   144篇
  2014年   215篇
  2013年   250篇
  2012年   275篇
  2011年   295篇
  2010年   188篇
  2009年   200篇
  2008年   254篇
  2007年   286篇
  2006年   255篇
  2005年   226篇
  2004年   222篇
  2003年   223篇
  2002年   216篇
  2001年   50篇
  2000年   46篇
  1999年   65篇
  1998年   76篇
  1997年   45篇
  1996年   45篇
  1995年   47篇
  1994年   52篇
  1993年   62篇
  1992年   66篇
  1991年   67篇
  1990年   49篇
  1989年   51篇
  1988年   52篇
  1987年   27篇
  1986年   48篇
  1985年   60篇
  1984年   39篇
  1983年   40篇
  1982年   47篇
  1981年   40篇
  1980年   37篇
  1979年   27篇
  1978年   40篇
  1976年   36篇
  1975年   29篇
  1974年   22篇
  1973年   29篇
  1971年   26篇
  1964年   27篇
排序方式: 共有5245条查询结果,搜索用时 656 毫秒
331.
A series of 4-(3,4-dihydro-1H-isoquinolin-2yl)-pyridines and analogous quinolines was prepared and evaluated as NR1/2B subtype selective NMDA receptor antagonists. 2-Hydroxyalkylamino substitution combines high affinity with selectivity (vs alpha1 and M1 receptors) and activity in vivo.  相似文献   
332.
Signaling in apoptosis and inflammation is often mediated by proteins of the death domain superfamily in the Fas/FADD/Caspase-8 or the Apaf-1/Caspase-9 pathways. This superfamily currently comprises the death domain (DD), death effector domain (DED), caspase recruitment domain (CARD), and pyrin domain (PYD) subfamilies. The PYD subfamily is most abundant, but three-dimensional structures are only available for the subfamilies DD, DED, and CARD, which have an antiparallel arrangement of six alpha helices as common fold. This paper presents the NMR structure of PYD of NALP1, a protein that is involved in the innate immune response and is a component of the inflammasome. The structure of NALP1 PYD differs from all other known death domain superfamily structures in that the third alpha helix is replaced by a flexibly disordered loop. This unique feature appears to relate to the molecular basis of familial Mediterranean fever (FMF), a genetic disease caused by single-point mutations.  相似文献   
333.
334.
In an effort to identify immunoregulatory molecules on dendritic cells (DC), we generated and screened for mAbs capable of modulating the T cell stimulatory function of DC. A particularly interesting mAb was mAb DF272. It recognizes monocyte-derived DC, but not blood monocytes or lymphocytes, and has profound immunomodulatory effects on DC. Treatment of DC with intact IgG or Fab of mAb DF272 enhanced their T cell stimulatory capacity. This effect on DC was accompanied by neither an up-regulation of costimulatory molecules such as B7.1 (CD80), B7.2 (CD86), and MHC class II molecules nor by an induction of cytokine production, including IL-1, TNF-alpha, IL-10, and IL-12. Moreover, the well-established inhibitory function of IL-10-treated DC could be reverted with mAb DF272. Even T cells, anergized because of stimulation with IL-10-treated DC, could be reactivated and induced to proliferate upon stimulation with mAb DF272-treated DC. Furthermore, mAb DF272-treated DC favored the induction of a type-1 cytokine response in T cells and inhibited IL-10 production. By using a retrovirus-based cDNA expression library generated from DC, we cloned and sequenced the mAb DF272-defined cell surface receptor and could demonstrate that it is identical with B7-H1 (programmed death-1 ligand), a recently identified new member of the B7 family of costimulatory molecules. Our results thus demonstrate that the mAb DF272-defined surface molecule B7-H1 represents a unique receptor structure on DC that might play a role in the induction and maintenance of T cell anergy.  相似文献   
335.
Antibodies (Abs) contribute to the control of influenza virus infection in vivo by reducing progeny virus yield from infected cells (yield reduction [YR]) and by inhibiting progeny virus from spreading the infection to new host cells (virus neutralization [VN]). Previous studies showed that the infection could be resolved in severe combined immunodeficiency (SCID) mice by treatment with hemagglutinin (HA)-specific monoclonal antibodies (MAbs) that exhibit both VN and YR activities but not by MAbs that exhibited only YR activity. To determine whether virus clearance requires both activities, we measured the therapeutic activity of an HA-specific MAb (VN and YR) and its Fab fragment (VN) by intranasal (i.n.) administration to infected SCID mice. Immunoglobulin G (IgG) and Fab cleared the infection with i.n. 50% effective doses (ED(50)s) of 16 and 90 pmol, respectively. To resolve an established infection solely by VN activity, Fab must be present in the respiratory tract at an effective threshold concentration until all infected cells have died and production of virus has ceased. Because IgG and Fab had different half-lives in the respiratory tract (22 and 8 h, respectively) and assuming that both operated mainly or solely by VN, it could be estimated that clearance was achieved 24 h after Ab treatment when both reagents were present in the respiratory tract at approximately 10 pmol. This dose was approximately 200 times larger than the respiratory tract-associated Ab dose resulting from administration of the intraperitoneal ED(50) (270 pmol) of IgG. This indicated that our procedure of i.n. administration of Ab did not make optimal use of the Ab's therapeutic activity.  相似文献   
336.
Two distantly related classes of cylindrical chaperonin complexes assist in the folding of newly synthesized and stress-denatured proteins in an ATP-dependent manner. Group I chaperonins are thought to be restricted to the cytosol of bacteria and to mitochondria and chloroplasts, whereas the group II chaperonins are found in the archaeal and eukaryotic cytosol. Here we show that members of the archaeal genus Methanosarcina co-express both the complete group I (GroEL/GroES) and group II (thermosome/prefoldin) chaperonin systems in their cytosol. These mesophilic archaea have acquired between 20 and 35% of their genes by lateral gene transfer from bacteria. In Methanosarcina mazei G?1, both chaperonins are similarly abundant and are moderately induced under heat stress. The M. mazei GroEL/GroES proteins have the structural features of their bacterial counterparts. The thermosome contains three paralogous subunits, alpha, beta, and gamma, which assemble preferentially at a molar ratio of 2:1:1. As shown in vitro, the assembly reaction is dependent on ATP/Mg2+ or ADP/Mg2+ and the regulatory role of the beta subunit. The co-existence of both chaperonin systems in the same cellular compartment suggests the Methanosarcina species as useful model systems in studying the differential substrate specificity of the group I and II chaperonins and in elucidating how newly synthesized proteins are sorted from the ribosome to the proper chaperonin for folding.  相似文献   
337.
Calmodulin (CaM) is a ubiquitous Ca2+-binding protein that regulates the ryanodine receptors (RyRs) by direct binding. CaM inhibits the skeletal muscle ryanodine receptor (RyR1) and cardiac muscle receptor (RyR2) at >1 microm Ca2+ but activates RyR1 and inhibits RyR2 at <1 microm Ca2+. Here we tested whether CaM regulates RyR2 by binding to a highly conserved site identified previously in RyR1. Deletion of RyR2 amino acid residues 3583-3603 resulted in background [35S]CaM binding levels. In single channel measurements, deletion of the putative CaM binding site eliminated CaM inhibition of RyR2 at Ca2+ concentrations below and above 1 microm. Five RyR2 single or double mutants in the CaM binding region (W3587A, L3591D, F3603A, W3587A/L3591D, L3591D/F3603A) eliminated or greatly reduced [35S]CaM binding and inhibition of single channel activities by CaM depending on the Ca2+ concentration. An RyR2 mutant, which assessed the effects of 4 amino acid residues that differ between RyR1 and RyR2 in or flanking the CaM binding domain, bound [35S]CaM and was inhibited by CaM, essentially identical to wild type (WT)-RyR2. Three RyR1 mutants (W3620A, L3624D, F3636A) showed responses to CaM that differed from corresponding mutations in RyR2. The results indicate that CaM regulates RyR1 and RyR2 by binding to a single, highly conserved CaM binding site and that other RyR type-specific sites are likely responsible for the differential functional regulation of RyR1 and RyR2 by CaM.  相似文献   
338.
Phosphorylation of the skeletal muscle (RyR1) and cardiac muscle (RyR2) ryanodine receptors has been reported to modulate channel activity. Abnormally high phosphorylation levels (hyperphosphorylation) at Ser-2843 in RyR1 and Ser-2809 in RyR2 and dissociation of FK506-binding proteins from the receptors have been implicated as one of the causes of altered calcium homeostasis observed during human heart failure. Using site-directed mutagenesis, we prepared recombinant RyR1 and RyR2 mutant receptors mimicking constitutively phosphorylated and dephosphorylated channels carrying a Ser/Asp (RyR1-S2843D and RyR2-S2809D) and Ser/Ala (RyR1-S2843A and RyR2-S2809A) substitution, respectively. Following transient expression in human embryonic kidney 293 cells, the effects of Ca2+, Mg2+, and ATP on channel function were determined using single channel and [3H]ryanodine binding measurements. In both assays, neither the skeletal nor cardiac mutants showed significant differences compared with wild type. Similarly essentially identical caffeine responses were observed in Ca2+ imaging measurements. Co-immunoprecipitation and Western blot analysis showed comparable binding of FK506-binding proteins to wild type and mutant receptors. Finally metabolic labeling experiments showed that the cardiac ryanodine receptor was phosphorylated at additional sites. Taken together, the results did not support the view that phosphorylation of a single site (RyR1-Ser-2843 and RyR2-Ser-2809) substantially changes RyR1 and RyR2 channel function.  相似文献   
339.
340.
The aim of this article is to briefly present the Galler Collection, a little-known historic Swiss bone reference series of high value for paleopathological research. The Galler Collection consists of approximately 600 mostly dry-bone specimens of many major bone diseases dating from the late 19th and early 20th centuries. Clinical information and autopsy reports are available for the majority of specimens. Rarely documented conditions represented in the collection include: severe forms of myositis ossificans progressiva, kyphoscoliosis, endemic cretinism, hypo- and hyperparathyroidism, and phosphorus-induced bone necrosis. At present, the Galler Collection is located at the National History Museum in Basel (Augustinergasse 2, 4001 Basel, Switzerland, Telephone: +41612665500, Fax: +41612665546).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号