首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4928篇
  免费   314篇
  国内免费   3篇
  2021年   50篇
  2020年   26篇
  2019年   39篇
  2018年   57篇
  2017年   43篇
  2016年   83篇
  2015年   144篇
  2014年   215篇
  2013年   250篇
  2012年   275篇
  2011年   295篇
  2010年   188篇
  2009年   200篇
  2008年   254篇
  2007年   286篇
  2006年   255篇
  2005年   226篇
  2004年   222篇
  2003年   223篇
  2002年   216篇
  2001年   50篇
  2000年   46篇
  1999年   65篇
  1998年   76篇
  1997年   45篇
  1996年   45篇
  1995年   47篇
  1994年   52篇
  1993年   62篇
  1992年   66篇
  1991年   67篇
  1990年   49篇
  1989年   51篇
  1988年   52篇
  1987年   27篇
  1986年   48篇
  1985年   60篇
  1984年   39篇
  1983年   40篇
  1982年   47篇
  1981年   40篇
  1980年   37篇
  1979年   27篇
  1978年   40篇
  1976年   36篇
  1975年   29篇
  1974年   22篇
  1973年   29篇
  1971年   26篇
  1964年   27篇
排序方式: 共有5245条查询结果,搜索用时 38 毫秒
231.
Fungi are key players in terrestrial ecosystem functions. They are not only indispensable symbionts of most of the terrestrial plants, but can also interact with almost all organisms and are the major decomposers of organic matter. Indeed, they are involved in most ecosystem services, so much that life on earth would not have evolved without them. Competition among fungi and with other organism groups has driven evolution of offensive and defensive mechanisms, including the production of secondary metabolites, which continue to be widely unexplored. In addition, fungal plant parasites threaten the global agricultural production and are therefore of highest relevance for human health and survival. Given the ecological and economical relevance of fungi, advancement of other biological and physical sciences are impeded because mycology—the science devoted to the study of fungi—is insufficiently recognized as a major field of life science and supported in basic and applied research and economic contexts.  相似文献   
232.
The diagnosis of respiratory chain deficiencies (RCDs) is complicated and the need for a diagnostic biomarker or biosignature has been widely expressed. In this study, the metabolic profile of a selected group of 29 RCD patients, with a predominantly muscle disease phenotype, and 22 controls were investigated using targeted and untargeted analyses of three sub-sections of the human metabolome, including urinary organic acids and amino acids [measured by gas chromatography–mass spectrometry (GC–MS)], as well as acylcarnitines (measured by electrospray ionization tandem MS). Although MS technologies are highly sensitive and selective, they are restrictive by being applied only to sub-sections of the metabolome; an untargeted nuclear magnetic resonance (NMR) spectroscopy approach was therefore also included. After data reduction and pre-treatment, a biosignature comprising six organic acids (lactic, succinic, 2-hydroxyglutaric, 3-hydroxyisobutyric, 3-hydroxyisovaleric and 3-hydroxy-3-methylglutaric acids), six amino acids (alanine, glycine, glutamic acid, serine, tyrosine and α-aminoadipic acid) and creatine, was constructed from uni- and multivariate statistical analyses and verified by cross-validation. The results presented here provide the first proof-of-concept that the metabolomics approach is capable of defining a biosignature for RCDs. We postulate that the composite of organic acids ≈ amino acids > creatine > betaine > carnitines represents the basic biosignature for RCDs. Validated through a prospective study, this could offer an improved ability to assign individual patients to a group with defined RCD characteristics and improve case selection for biopsy procedures, especially in infants and children.  相似文献   
233.
234.
Neurochemical Research - Focal epileptic seizures can in some patients be managed by inhibiting γ-aminobutyric acid (GABA) uptake via the GABA transporter 1 (GAT1) using tiagabine...  相似文献   
235.
Continuous processing is the future production method for monoclonal antibodies (mAbs). A fully continuous, fully automated downstream process based on disposable equipment was developed and implemented inside the MoBiDiK pilot plant. However, a study evaluating the comparability between batch and continuous processing based on product quality attributes was not conducted before. The work presented fills this gap comparing both process modes experimentally by purifying the same harvest material (side-by-side comparability). Samples were drawn at different time points and positions in the process for batch and continuous mode. Product quality attributes, product-related impurities, as well as process-related impurities were determined. The resulting polished material was processed to drug substance and further evaluated regarding storage stability and degradation behavior. The in-process control data from the continuous process showed the high degree of accuracy in providing relevant process parameters such as pH, conductivity, and protein concentration during the entire process duration. Minor differences between batch and continuous samples are expected as different processing conditions are unavoidable due to the different nature of batch and continuous processing. All tests revealed no significant differences in the intermediates and comparability in the drug substance between the samples of both process modes. The stability study of the final product also showed no differences in the stability profile during storage and forced degradation. Finally, online data analysis is presented as a powerful tool for online-monitoring of chromatography columns during continuous processing.  相似文献   
236.

Background and Aims

The inflorescence structure determines the spatiotemporal arrangement of the flowers during anthesis and is therefore vital for reproductive success. The Leguminosae are among the largest angiosperm plant families and they include some important crop plants. In papilionoid legumes, the raceme is the most common type of inflorescence. However, a range of other inflorescence types have evolved via various developmental processes. A (re-)investigation of inflorescences in Swainsona formosa, Cicer arietinum, Abrus precatorius, Hardenbergia violacea and Kennedia nigricans leads to new insights into reduction mechanisms and to a new hypothesis on the evolution of the papilionoid pseudoraceme.

Methods

Inflorescence morphology and ontogeny were studied using scanning electron microscopy (SEM).

Key Results

The inflorescence in S. formosa is an umbel with a rare type of pendulum symmetry which may be triggered by the subtending leaf. Inflorescences in C. arietinum are reduced to a single flower. An early formed adaxial bulge is the sterile apex of the inflorescence (i.e. the inflorescence is open and not terminated by a flower). In partial inflorescences of A. precatorius, the axis is reduced and its meristem is relocated towards the main inflorescence. Flower initiation follows a peculiar pendulum pattern. Partial inflorescences in H. violacea and in K. nigricans show reduction tendencies. In both taxa, initiated but early reduced bracteoles are present.

Conclusions

Pendulum symmetry in S. formosa is probably associated with distichous phyllotaxis. In C. arietinum, strong reduction tendencies are revealed. Based on studies of A. precatorius, the papilionoid pseudoraceme is reinterpreted as a compound raceme with condensed lateral axes. From an Abrus-like inflorescence, other types can be derived via reduction of flower number and synchronization of flower development. A plea is made for uniform usage of inflorescence terminology.Key words: Abrus precatorius, Cicer arietinum, Hardenbergia violacea, Kennedia nigricans, inflorescence, Leguminosae, Papilionoideae, pseudoraceme, Swainsona formosa  相似文献   
237.
238.
239.
240.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号