首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5053篇
  免费   327篇
  国内免费   3篇
  5383篇
  2021年   50篇
  2020年   27篇
  2019年   41篇
  2018年   59篇
  2017年   46篇
  2016年   83篇
  2015年   146篇
  2014年   219篇
  2013年   252篇
  2012年   278篇
  2011年   297篇
  2010年   189篇
  2009年   202篇
  2008年   255篇
  2007年   288篇
  2006年   260篇
  2005年   226篇
  2004年   224篇
  2003年   225篇
  2002年   220篇
  2001年   51篇
  2000年   49篇
  1999年   73篇
  1998年   78篇
  1997年   47篇
  1996年   45篇
  1995年   48篇
  1994年   53篇
  1993年   64篇
  1992年   72篇
  1991年   65篇
  1990年   54篇
  1989年   55篇
  1988年   57篇
  1987年   30篇
  1986年   52篇
  1985年   67篇
  1984年   42篇
  1983年   41篇
  1982年   52篇
  1981年   43篇
  1980年   38篇
  1979年   35篇
  1978年   42篇
  1976年   38篇
  1975年   31篇
  1973年   30篇
  1972年   23篇
  1971年   27篇
  1964年   27篇
排序方式: 共有5383条查询结果,搜索用时 0 毫秒
91.
Summary The fatty acid synthetase (FAS) gene FAS1 of the alkane-utilizing yeast Yarrowia lipolytica was cloned and sequenced. The gene is represented by an intron-free reading frame of 6228 by encoding a protein of 2076 amino acids and 229980 Da molecular weight. This protein exhibits a 58% sequence similarity to the corresponding Saccharomyces cerevisiae FAS -subunit. The sequential order of the five FAS1-encoded enzyme domains, acetyl transferase, enoyl reductase, dehydratase and malonyl/palmityl-transferase, is co-linear in both organisms. This finding agrees with available evidence that the functional organization of FAS genes is similar in related organisms but differs considerably between unrelated species. In addition, previously reported conflicting data concerning the 3 end of S. cerevisiae FAS1 were re-examined by genomic and cDNA sequencing of the relevant portion of the gene. Thereby, the translational stop codon was shown to lie considerably downstream of both published termination sites. The S. cerevisiae FAS1 gene thus has a corrected length of 6153 by and encodes a protein of 2051 amino acids and 228667 Da molecular weight.  相似文献   
92.

Objective

To describe temporal changes in systolic, diastolic, and mean blood pressure (SBP, DBP, and MBP, respectively) in term and preterm infants immediately after birth.

Methods

Prospective observational two-center study. In term infants SBP, DBP, and MBP were assessed non-invasively every minute for the first 15 minutes, and in preterm infants every minute for the first 15 minutes, as well as at 20, 25, 30, 45, and 60 minutes after birth. Regression analyses were performed by gender and respiratory support in all neonates; and by mode of delivery, cord clamping time, and development of ultrasound-detected brain injury in preterm neonates.

Results

Term infants (n = 54) had a mean (SD) birth weight of 3298 (442) g and gestational age of 38 (1) weeks, and preterm infants (n = 94) weighed 1340 (672) g and were 30 (3) weeks gestation. Term infants’ SBP, DBP and MBP within the first 15 minutes after birth were independent of gender or respiratory support. Linear mixed regression analysis showed that preterm infants, who were female, born vaginally, had delayed cord clamping and did not require positive pressure ventilation nor develop periventricular injury or ventriculomegaly, had significantly higher SBP, DBP, and MBP at some measurement points within the first hour after birth.

Conclusions

We present novel reference ranges of BP immediately after birth in a cohort of term and preterm neonates. They may aid in optimization of cardiovascular support during early transition at all gestations.  相似文献   
93.
94.
Top-down control analysis (TDCA) is a useful tool for quantifying constraints on metabolic pathways that might be overcome by biotechnological approaches. Previous studies on lipid accumulation in oilseed rape have suggested that diacylglycerol acyltransferase (DGAT), which catalyses the final step in seed oil biosynthesis, might be an effective target for enhancing seed oil content. Here, increased seed oil content, increased DGAT activity, and reduced substrate:product ratio are demonstrated, as well as reduced flux control by complex lipid assembly, as determined by TDCA in Brassica napus (canola) lines which overexpress the gene encoding type-1 DGAT. Lines overexpressing DGAT1 also exhibited considerably enhanced seed oil content under drought conditions. These results support the use of TDCA in guiding the rational selection of molecular targets for oilseed modification. The most effective lines had a seed oil increase of 14%. Moreover, overexpression of DGAT1 under drought conditions reduced this environmental penalty on seed oil content.  相似文献   
95.
A congeneric series of benzamidine-type ligands with a central proline moiety and a terminal cycloalkyl group—linked by a secondary amine, ether, or methylene bridge—was synthesized as trypsin inhibitors. This series of inhibitors was investigated by isothermal titration calorimetry, crystal structure analysis in two crystal forms, and molecular dynamics simulations. Even though all of these congeneric ligands exhibited essentially the same affinity for trypsin, their binding profiles at the structural, dynamic, and thermodynamic levels are very distinct. The ligands display a pronounced enthalpy/entropy compensation that results in a nearly unchanged free energy of binding, even though individual enthalpy and entropy terms change significantly across the series. Crystal structures revealed that the secondary amine-linked analogs scatter over two distinct conformational families of binding modes that occupy either the inside or of the outside the protein's S3/S4 specificity pocket. In contrast, the ether-linked and methylene-linked ligands preferentially occupy the hydrophobic specificity pocket. This also explains why the latter ligands could only be crystallized in the conformationally restricting closed crystal form whereas the derivative with the highest residual mobility in the series escaped our attempts to crystallize it in the closed form; instead, a well-resolved structure could only be achieved in the open form with the ligand in disordered orientation. These distinct binding modes are supported by molecular dynamics simulations and correlate with the shifting enthalpic/entropic signatures of ligand binding. The examples demonstrate that, at the molecular level, binding modes and thermodynamic binding signatures can be very different even for closely related ligands. However, deviating binding profiles provide the opportunity to optimally address a given target.  相似文献   
96.
 Radioactive in situ hybridization techniques or enzymatic detection procedures of hapten-modified human cytomegalovirus (HCMV) probes have been widely used for studying the infection of peripheral blood leukocytes with HCMV. This report describes significant improvements in terms of signal resolution which can be obtained by applying a highly sensitive fluorescence in situ hybridization (FISH) technique in conjunction with a large subgenomic HCMV DNA probe. Three cosmid clones spanning 119.1 kb of the HCMV genome (230 kb) were used to construct the digoxigenin-11-dUTP-labeled probe which was found to be superior to a total HCMV probe representing the entire genome. Crucial hybridization parameters were analyzed systematically in order to ensure optimal resolution power and sensitivity. The protocol was successfully applied to HCMV-infected fibroblasts and peripheral blood leukocytes of 12 transplant patients and unambiguously facilitated the precise intracellular localization of HCMV genomes in infected cells. Because of its excellent resolution properties, accompanied by the virtual absence by any background staining, we recommend the use of this protocol as a sensitive approach for further virological analyses of the interactions between HCMV and peripheral blood leukocytes at the single-cell level. Accepted: 16 February 1996  相似文献   
97.
Hypertrehalosaemic hormones stimulate trehalogenesis while inhibiting glycolysis in cockroach fat body. Signal transduction of the hypertrehalosaemic peptide Bld HrTH was examined in isolated fat body of the Argentine cockroach Blaptica dubia with respect to its effects on the increase in trehalose production and decrease in the content of the glycolytic activator fructose 2,6-bisphosphate in the tissue. Cyclic AMP does not seem to be involved in these processes as the cAMP analogue cpt-cAMP and the phosphodiesterase inhibitor IBMX, which both permeate cell membranes, had no effect on either parameter. Octopamine at physiological concentrations (10−7 mol · l−1) was also ineffective, but at 10−5 mol · l−1 or above, octopamine stimulated trehalose production although the content of fructose 2,6-bisphosphate in fat body was not affected. Both calcium entry and the release of Ca2+ from intracellular stores seem to be involved in the action of the hormone. If Ca2+ was omitted from the incubation medium, the hormone stimulated trehalose production less, though still significantly, whereas the hormone effect on fructose 2,6-bisphosphate was completely abolished in the absence of extracellular Ca2+. With Ca2+ present in the medium, the effect of the hormone on fructose 2,6-bisphosphate could be fully mimicked by the calcium ionophore A23187, suggesting that calcium entry is a␣decisive step in this signalling pathway. Trehalose production, on the other hand, was increased by thimerosal and thapsigargin which increase cytosolic Ca2+ from intracellular stores, whereas thimerosal in the absence of extracellular Ca2+ increased rather than decreased the content of fructose 2,6-bisphosphate, thus dissociating the two effects, which are normally coordinated by the hormone. Trehalose production and the content of fructose 2,6-bisphosphate were not significantly affected by mepacrine and mellitin, which are known to inhibit, respectively stimulate, phospholipase A2. Our data suggest that the effects of Bld HrTH on the stimulation of trehalose production and reduction of fructose 2,6-bisphosphate content in fat body are mediated by Ca2+, but that different signalling pathways are involved, suggesting that the two processes, although they are functionally linked, could be regulated separately. Accepted: 10 November 1997  相似文献   
98.
Using 40 known human-specific LTR sequences, we have derived a consensus sequence for an evolutionary young HERV-K (HML-2) LTR family, which was named the HS family. In the human genome the HS family is represented by approximately 150-160 LTR sequences, 90% of them being human-specific (hs). The family can be subdivided into two subfamilies differing in five linked nucleotide substitutions: HS-a and HS-b of 5.8 and 10.3 Myr evolutionary ages, respectively. The HS-b subfamily members were transpositionally active both before the divergence of the human and chimpanzee ancestor lineages and after it in both lineages. The HS-a subfamily comprises only hs LTRs. These and other data strongly suggest that at least three "master genes" of HERV-K (HML-2) LTRs were active in the human ancestor lineage after the human-chimpanzee divergence. We also found hs HERV-K (HML-2) LTRs integrations in introns of 12 human genes and identified 13 new hs HERV-K (HML-2) LTRs.  相似文献   
99.

Background  

The potyviruses sugarcane mosaic virus (SCMV) and maize dwarf mosaic virus (MDMV) are major pathogens of maize worldwide. Two loci, Scmv1 and Scmv2, have ealier been shown to confer complete resistance to SCMV. Custom-made microarrays containing previously identified SCMV resistance candidate genes and resistance gene analogs were utilised to investigate and validate gene expression and expression patterns of isogenic lines under pathogen infection in order to obtain information about the molecular mechanisms involved in maize-potyvirus interactions.  相似文献   
100.
Gerhard Klebe 《Proteins》2012,80(2):626-648
Small molecules are recognized in protein‐binding pockets through surface‐exposed physicochemical properties. To optimize binding, they have to adopt a conformation corresponding to a local energy minimum within the formed protein–ligand complex. However, their conformational flexibility makes them competent to bind not only to homologous proteins of the same family but also to proteins of remote similarity with respect to the shape of the binding pockets and folding pattern. Considering drug action, such observations can give rise tounexpected and undesired cross reactivity. In this study, datasets of six different cofactors (ADP, ATP, NAD(P)(H), FAD, and acetyl CoA, sharing an adenosine diphosphate moiety as common substructure), observed in multiple crystal structures of protein–cofactor complexes exhibiting sequence identity below 25%, have been analyzed for the conformational properties of the bound ligands, the distribution of physicochemical properties in the accommodating protein‐binding pockets, and the local folding patterns next to the cofactor‐binding site. State‐of‐the‐art clustering techniques have been applied to group the different protein–cofactor complexes in the different spaces. Interestingly, clustering in cavity (Cavbase) and fold space (DALI) reveals virtually the same data structuring. Remarkable relationships can be found among the different spaces. They provide information on how conformations are conserved across the host proteins and which distinct local cavity and fold motifs recognize the different portions of the cofactors. In those cases, where different cofactors are found to be accommodated in a similar fashion to the same fold motifs, only a commonly shared substructure of the cofactors is used for the recognition process. Proteins 2012. © 2011 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号