首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   383篇
  免费   29篇
  2023年   10篇
  2022年   2篇
  2021年   15篇
  2020年   8篇
  2019年   9篇
  2018年   30篇
  2017年   19篇
  2016年   19篇
  2015年   21篇
  2014年   32篇
  2013年   38篇
  2012年   42篇
  2011年   12篇
  2010年   25篇
  2009年   26篇
  2008年   13篇
  2007年   11篇
  2006年   7篇
  2005年   12篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   4篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1989年   4篇
  1988年   2篇
  1986年   2篇
  1985年   3篇
  1983年   4篇
  1982年   2篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1971年   1篇
  1969年   1篇
  1965年   1篇
  1939年   1篇
  1934年   1篇
排序方式: 共有412条查询结果,搜索用时 15 毫秒
101.
The relationship between phosphorylation ratio [( ATP])/[ADP][Pi], phosphocreatine (PCr)/Pi, and ATPase activity was determined for isolated rat heart mitochondria, and the use of phosphorylation ratio and/or PCr/Pi as bioenergetic indices (Chance, B., Eleff, S., Leigh, J. S., Sokolow, D., and Sapega, A. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 6714-6718) was evaluated. Isolated rat heart mitochondria were suspended at low concentration (0.5-2.0 mg of protein/ ml) in oxygenated KCl/sucrose/4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid medium at 25 degrees C and pyruvate, malate, PCr, ATP, Pi, and Mg2+ were added. Changes in extramitochondrial phosphorus compounds were followed by 31P NMR. The ATPase activity was varied by the addition of potato apyrase. It was found that the logarithm of steady state PCr/Pi decreased linearly with increasing ATPase rate with a PCr/Pi intercept of 32.8 at 0 ATPase rate. The log phosphorylation ratio was also linearly related to the ATPase rate with an extrapolated maximum value of 6.87 at 0 ATPase rate, corresponding to a phosphorylation ratio of 7.41 X 10(6) M(-1) and a delta GATP of -16.3 kcal. The phosphorylation ratio in these experiments (for state 4 respiration) was greater by 1 or 2 orders of magnitude than previously reported for either isolated mitochondria or for whole tissue.  相似文献   
102.
Desmoglein‐3 (Dsg3) adhesion protein is the main target of autoantibodies and autoreactive T cells in Pemphigus vulgaris (PV) autoimmune skin disorder. Several mapping studies of Dsg3 T cell epitope regions were performed, and based on those data, we designed and synthesized four peptide series corresponding to Dsg3 T cell epitope regions. Each peptide series consists of a 17mer full‐length peptide (Dsg3/189–205, Dsg3/206–222, Dsg3/342–358, and Dsg3/761–777) and its N‐terminally truncated derivatives, resulting in 15 peptides altogether. The peptides were prepared on solid phase and were chemically characterized. In order to establish a structure–activity relationship, the solution conformation of the synthetic peptides has been investigated using electronic circular dichroism spectroscopy. The in vitro T cell stimulating efficacy of the peptides has been determined on peripheral blood mononuclear cells isolated from whole blood of PV patients and also from healthy donors. After 20 h of stimulation, the interferon (IFN)‐γ content of the supernatants was measured by enzyme‐linked immunosorbent assay. In the in vitro conditions, peptides were stable and non‐cytotoxic. The in vitro IFN‐γ production profile of healthy donors and PV patients, induced by peptides as synthetic antigens, was markedly different. The most unambiguous differences were observed after stimulation with 17mer peptide Dsg3/342–358, and three truncated derivatives from two other peptide series, namely, peptides Dsg3/192–205, Dsg3/763–777, and Dsg3/764–777. Comparative analysis of in vitro activity and the capability of oligopeptides to form ordered or unordered secondary structure showed that peptides bearing high solvent sensibility and backbone flexibility were the most capable to distinguish between healthy and PV donors. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
103.
104.
The retromer is an evolutionarily conserved coat complex that consists of Vps26, Vps29, Vps35 and a heterodimer of sorting nexin (Snx) proteins in yeast. Retromer mediates the recycling of transmembrane proteins from endosomes to the trans‐Golgi network, including receptors that are essential for the delivery of hydrolytic enzymes to lysosomes. Besides its function in lysosomal enzyme receptor recycling, involvement of retromer has also been proposed in a variety of vesicular trafficking events, including early steps of autophagy and endocytosis. Here we show that the late stages of autophagy and endocytosis are impaired in Vps26 and Vps35 deficient Drosophila larval fat body cells, but formation of autophagosomes and endosomes is not compromised. Accumulation of aberrant autolysosomes and amphisomes in the absence of retromer function appears to be the consequence of decreased degradative capacity, as they contain undigested cytoplasmic material. Accordingly, we show that retromer is required for proper cathepsin L trafficking mainly independent of LERP, the Drosophila homolog of the cation‐independent mannose 6‐phosphate receptor. Finally, we find that Snx3 and Snx6 are also required for proper autolysosomal degradation in Drosophila larval fat body cells.   相似文献   
105.
In this paper, we investigated the isoform‐specific roles of certain protein kinase C (PKC) isoforms in the regulation of skeletal muscle growth. Here, we provide the first intriguing functional evidence that nPKCδ (originally described as an inhibitor of proliferation in various cells types) is a key player in promoting both in vitro and in vivo skeletal muscle growth. Recombinant overexpression of a constitutively active nPKCδ in C2C12 myoblast increased proliferation and inhibited differentiation. Conversely, overexpression of kinase‐negative mutant of nPKCδ (DN‐nPKCδ) markedly inhibited cell growth. Moreover, overexpression of nPKCδ also stimulated in vivo tumour growth and induced malignant transformation in immunodeficient (SCID) mice whereas that of DN‐nPKCδ suppressed tumour formation. The role of nPKCδ in the formation of rhabdomyosarcoma was also investigated where recombinant overexpression of nPKCδ in human rhabdomyosarcoma RD cells also increased cell proliferation and enhanced tumour formation in mouse xenografts. The other isoforms investigated (PKCα, β, ε) exerted only minor (mostly growth‐inhibitory) effects in skeletal muscle cells. Collectively, our data introduce nPKCδ as a novel growth‐promoting molecule in skeletal muscles and invite further trials to exploit its therapeutic potential in the treatment of skeletal muscle malignancies.  相似文献   
106.
Protein phosphatase-1M (PP1M, myosin phosphatase) consists of a PP1 catalytic subunit (PP1c) and the myosin phosphatase target subunit-1 (MYPT1). RhoA-activated kinase (ROK) regulates PP1M via inhibitory phosphorylation of MYPT1. Using multidisciplinary approaches, we have studied the roles of PP1M and ROK in neurotransmission. Electron microscopy demonstrated the presence of MYPT1 and ROK in both pre- and post-synaptic terminals. Tautomycetin (TMC), a PP1-specific inhibitor, decreased the depolarization-induced exocytosis from cortical synaptosomes. trans-4-[(1R)-1-aminoethyl]-N-4-pyridinylcyclohexanecarboxamide dihydrochloride, a ROK-specific inhibitor, had the opposite effect. Mass spectrometry analysis identified several MYPT1-bound synaptosomal proteins, of which interactions of synapsin-I, syntaxin-1, calcineurin-A subunit, and Ca(2+) /calmodulin-dependent kinase II with MYPT1 were confirmed. In intact synaptosomes, TMC increased, whereas Y27632 decreased the phosphorylation levels of MYPT1(Thr696) , myosin-II light chain(Ser19) , synapsin-I(Ser9) , and syntaxin-1(Ser14) , indicating that PP1M and ROK influence their phosphorylation status. Confocal microscopy indicated that MYPT1 and ROK are present in the rat ventral cochlear nucleus both pre- and post-synaptically. Analysis of the neurotransmission in an auditory glutamatergic giant synapse demonstrated that PP1M and ROK affect neurotransmission via both pre- and post-synaptic mechanisms. Our data suggest that both PP1M and ROK influence synaptic transmission, but further studies are needed to give a full account of their mechanism of action.  相似文献   
107.
Rőszer T  Bánfalvi G 《Peptides》2012,34(1):177-185
Members of the FMRFamide-related peptide (FaRP) family are neurotransmitters, hormone-like substances and tumor suppressor peptides. In mammals, FaRPs are considered as anti-opiate peptides due to their ability to inhibit opioid signaling. Some FaRPs are asserted to attenuate opiate tolerance. A recently developed chimeric FaRP (Met-enkephalin-FMRFa) mimics the analgesic effects of opiates without the development of opiate-dependence, displaying a future therapeutical potential in pain reduction. In this review we support the notion, that opiates and representative members of the FaRP family show overlapping effects on apoptosis. Binding of FaRPs to opioid receptors or to their own receptors (G-protein linked membrane receptors and acid-sensing ion channels) evokes or suppresses cell death, in a cell- and receptor-type manner. With the dramatically increasing incidence of opiate abuse and addiction, understanding of opioid-induced cell death, and in this context FaRPs will deserve growing attention.  相似文献   
108.
Pituitary adenylate cyclase activating polypeptide (PACAP) is present in the cranial arteries and trigeminal sensory neurons. We therefore examined the alterations in PACAP-like immunoreactivity (PACAP-LI) in a time-dependent manner in two rat models of trigeminovascular system (TS) activation. In one group chemical stimulation (CS) was performed with i.p. nitroglycerol (NTG), and in the other one the trigeminal ganglia (TRG) were subjected to electrical stimulation (ES). The two biologically active forms, PACAP-38 and PACAP-27, were determined by means of radioimmunoassay (RIA) and mass spectrometry (MS) in the plasma, the cerebrospinal fluid (CSF), the trigeminal nucleus caudalis (TNC), the spinal cord (SC) and the TRG. The tissue concentrations of PACAP-27 were 10 times lower than those of PACAP-38 in the TNC and SC, but about half in the TRG. PACAP-38, but not PACAP-27, was present in the plasma. Neither form could be identified in the CSF. PACAP-38-LI in the plasma, SC and TRG remained unchanged after CS, but it was increased significantly in the TNC 90 and 180 min after NTG injection. In response to ES of the TRG, the level of PACAP-38 in the plasma and the TNC was significantly elevated 90 and 180 min later, but not in the SC or the TRG. The alterations in the levels of PACAP-27 in the tissue homogenates in response to both forms of stimulation were identical to those of PACAP-38. The selective increases in both forms of PACAP in the TNC suggest its important role in the central sensitization involved in migraine-like headache.  相似文献   
109.
Purpose: The clinical demand for bone grafting materials necessitated the development of animal models. Critical size defect model has been criticized recently, mainly for its inaccuracy. Our objective was to develop a dependable animal model that would provide compromised bone healing, and would allow the investigation of bone substitutes. Methods: In the first group a critical size defect was created in the femur of adult male Wistar rats, and a non-critical defect in the remaining animals (Groups II, III and IV). The defect was left empty in group II, while in groups III and IV a spacer was interposed into the gap. Osteoblast activity was evaluated by NanoSPECT/CT imaging system. New bone formation and assessment of a union or non-union was observed by μCT and histology. Results: The interposition model proved to be highly reproducible and provided a bone defect with compromised bone healing. Significant bone regeneration processes were observed four weeks after removal of the spacer. Conclusion: Our results have shown that when early bone healing is inhibited by the physical interposition of a spacer, the regeneration process is compromised for a further 4 weeks and results in a bone defect during the time-course of the study.  相似文献   
110.
A comparative analysis of human and experimental animal (canine) tissues was performed to characterize and describe cellular and histological responses during the processes of newly forming intravascular tissues after stent implantation. Routine histological and immunohistochemical evaluation of 20 human samples and 9 samples from animal models were used one day, one week and one month after the stent implantation. After one day of implantation, there was no difference between the human and canine peripheral arteries, suggesting a similar cellular and histological response in the early phase. In contrast, after one week of implantation, during the proliferative phase the repairing human tissue showed less intensive production of inflammatory cells and more intensive increase in number of vascular cells than did the canine model. In addition, cellular changes normally restituted by the end of one month in canine peripheral arteries, but vascular cells persisted in human atherosclerotic arteries. In conclusion, results of this study suggest differences in both phases of vascular repair in the post-stented period, because both proliferative and regressive phases showed histological differences in canine and human samples. In canine, the restitution of vascular wall was completed by the end of first month but persistent vascular cell proliferation was visible in the human peripheral arteries. It can be suggested that delayed cellular response might indicate restenosis but also can be considered considered as a progression of the original arterial disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号