首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1807篇
  免费   146篇
  国内免费   1篇
  2023年   10篇
  2022年   13篇
  2021年   44篇
  2020年   28篇
  2019年   40篇
  2018年   55篇
  2017年   33篇
  2016年   46篇
  2015年   89篇
  2014年   84篇
  2013年   119篇
  2012年   109篇
  2011年   143篇
  2010年   92篇
  2009年   73篇
  2008年   96篇
  2007年   125篇
  2006年   101篇
  2005年   90篇
  2004年   94篇
  2003年   75篇
  2002年   72篇
  2001年   18篇
  2000年   19篇
  1999年   26篇
  1998年   20篇
  1997年   14篇
  1996年   12篇
  1995年   6篇
  1994年   10篇
  1993年   7篇
  1992年   9篇
  1991年   13篇
  1990年   9篇
  1989年   17篇
  1988年   8篇
  1987年   7篇
  1985年   11篇
  1984年   10篇
  1983年   6篇
  1982年   10篇
  1980年   4篇
  1979年   14篇
  1978年   6篇
  1977年   11篇
  1976年   8篇
  1974年   5篇
  1973年   5篇
  1966年   8篇
  1965年   9篇
排序方式: 共有1954条查询结果,搜索用时 31 毫秒
21.
Novel backbone-to-side chain and backbone-to-backbone cyclic analogues of substance P (SP) were prepared by solid-phase synthesis and screened for biological activity. An analogue containing a thioether- lactam ring between positions 9 and 11 showed an EC50 value of 20nM toward the neurokinin 1 (NK-1) and was inactive toward the NK-2 and NK-3 receptors. On the other hand, in a multiple backbone cyclic peptide library of similar analogues, in which the sulphur was excluded from the ring, very low activity was detected. The activity was re-evaluated and was found to be even lower (EC50=0.11 mM ) than the previously published data. These results indicate that the thioether moiety has a crucial role in receptor activation. The results also show tolerance of the NK-1 receptor, but not NK-2 or NK-3, to cyclization of the C-terminal portion of the SP6–11 hexapeptide.  相似文献   
22.
Phospholipase A2 selectively hydrolyses the ester linkage at the sn-2 position of phospholipids forming lysocompounds. This bioconversion has importance in biotechnology since lysophospholipids are strong bioemulsifiers. The aim of the present work was to study the kinetic behaviour and properties of immobilized phospholipase A2 from bee venom adsorbed into an ion exchange support. The enzyme had high affinity for CM-Sephadex® support and the non-covalent interaction was optimum at pH 8. The activity of immobilized phospholipase A2 was comparatively evaluated with the soluble enzyme using a phospholipid/Triton X-100 mixed micelle as assay system. The immobilized enzyme showed high retention activity and excellent stability under storage. The activity of the immobilized system remained almost constant after several cycles of hydrolysis. Immobilized phospholipase A2 was less sensitive to pH changes compared to soluble form. The kinetic parameters obtained (Vmax 883.4 μmol mg−1 min−1 and a Km 12.9 mM for soluble form and Vmax = 306 μmol mg−1 min−1 and a Km = 3.9 for immobilized phospholipase A2) were in agreement with the immobilization effect. The results obtained with CM-Sephadex®-phospholipase A2 system give a good framework for the development of a continuous phospholipid bioconversion process.  相似文献   
23.
24.
The in vitro RNA synthesis and poly(A) synthesis catalyzed by cauliflower RNA polymerase are stimulated by an addition of polyethylenimine (PEI) at a low concentration to the reaction medium. Evidence is presented that PEI exerts its stimulative effect on a reaction coexisting of enzyme, template, and substrate, and not on the template or enzyme alone.  相似文献   
25.
The cytochrome bo quinol oxidase of Escherichia coli is one of two respiratory O2 reductases which the bacterium synthesizes. The enzyme complex contains copper and 2 mol of b-type heme. Electron paramagnetic resonance (epr) spectroscopy of membranes from a strain having amplified levels of this enzyme complex reveals signals from low- and high-spin b-type hemes, but the copper, now established as a component of the oxidase, is not directly detectable by epr. The high-spin signal from the cytochrome bo complex, which we attribute to cytochrome o, when titrated potentiometrically, gives a bell-shaped curve. The low potential side of this curve is biphasic (Em7 approximately 180 and 280 mV) and corresponds to the reduction/oxidation of the cytochrome(s). The high potential side of the bell-shaped curve is monophasic (Em7 approximately 370 mV) and is proposed to be due to reduction/oxidation of a copper center which, when in the Cu(II) form, is tightly spin-coupled to a heme, probably cytochrome o, resulting in a net even spin system and loss of the epr spectrum. The low-spin cytochrome b titrates biphasically with Em7 values of approximately 180 and 280 mV, similar to the high-spin component but without the loss of signal at high potentials.  相似文献   
26.
The NO complex of lipoxygenase with EPR signals near g = 4.0 is an S = 3/2 system with D approximately 15 cm-1 similar to Fe2+-EDTA-NO. This may result from antiferromagnetic coupling of axial (D greater than E) high spin ferrous iron to NO. The other NO complex of lipoxygenase, with EPR signals below ge, may result from rhombic high spin ferrous iron coupled to NO with D greater than J. The quenching of both signals by a hydroperoxy derivative of linoleic acid probably represents replacement of NO by an oxygen ligand.  相似文献   
27.
EPR spectra of oxidized R. gelatinosa HiPIP demonstrate two kinds of temperature dependent changes which can be analyzed in terms of an excited state at 142 ± 10cm?1 and a second excited state at 490 ± 100cm?1. These states represent further verification of antiferromagnetic exchange among the 4 irons in this tetranuclear cluster, with a value for the coupling constant of J = ?44cm?1. Aside from resonance Raman spectroscopic results, this is the first report of a ladder of excited states predicted for exchange coupled ions.  相似文献   
28.
Two distinct ferredosin-type iron-sulfur centers (designated as Centers S-1 and S-2) are present in the soulble succinate dehydrogenase in approximately equivalent concentrations to that of bound flavin. Both Centers S-1 and S-2 exhibit electron paramagnetic resonance absorbance in the reduced state at the same magnetic field (gz = 2.03, gy = 1.93, and gx = 1.91) with similar line shape. Center S-2 is reducible only chemically with dithionite and remains oxidized under physiological conditions. Thus, its functional role is unknown; however, thermodynamic and EPR characterization of this iron-sulfur center has revealed important molecular events related to this dehydrogenase. The midpoint potentials of Centers S-1 and S-2 determined in the soluble succinate dehydrogenase preparations are -5 +/- 15 mV and -400 +/- 15 mV, respectively, while corresponding midpoint potentials determined in particulate preparations, such as succinate-cytochrome c reductase or succinate-ubiquinone reductase, are 0 +/- 15 mV and -260 +/- 15 mV. Reconstitution of soluble succinate dehydrogenase with the cytochrome b-c1 complex is accompanied by a reversion of the Center S-I midpoint from -400 +/- 15 mV to -250 +/- 15 mV with a concomitant restoration of antimycin A-sensitive succinate-cytochrome c reductase activity. There observations indicate that, during the reconstitution process, Center S-I is restored to its original molecular environment. In the reconstitutively active succinate dehydrogenase, the relaxation time of Center S-2 is much shorter than that of S-1, thus Center S-2 spectra are well discernible only below 20 K (at 1 milliwatt of power), while the resonance absorbance of Center S-1 is detectable at higher temperatures and readily saturates below 15 K. Over a wide temperature range the power saturation of Center S-1 resonance absorbance is relieved by Center S-2 in the paramagnetic state, and the Center S-2 central resonance absorbance is broadened by Center S-1 spins, due to a spin-spin interaction between these centers. These observations indicate an adjacent location of these centers in the enzyme molecule. In reconstitutively inactive enzymes, subtle modification of the enzyme structure appears to shift the temperature dependence of Center S-2 relaxation to the higher temperature. Thus the EPR signals of Center S-2 are also detectable at higher temperature. In this system a splitting of the central peak of the Center S-2 spectrum due to spin-spin interaction was observed at extremely low temperatures, while this was not observed in reconstitutively active enzymes or in paritculate preparations. This spin-spin interaction phenomena of inactive enzymes disappeared upon chemical reactivation with concomitant appearance of the reconstitutive activity. These observations provide a close correlation between the molecular integrity of the enzyme and its physiological function.  相似文献   
29.
Cholecystokinin-8 like immunoreactivity (CCK-8 IR) was measured in different brain regions of rats with experimental liver cirrhosis. A statistically significant reduction of CCK-8 content was observed in the hypothalamus of cirrhotic rats. No significant modification of brain CCK fractionation pattern was observed in treated animals as compared to controls. The decrease of CCK-8 IR parallels the recently reported hypothalamic depletion of beta endorphin in cirrhotic rats confirming that central neuropeptides are affected by chronic liver failure.  相似文献   
30.
Summary The flavoprotein NADPH-adrenodoxin reductase and the iron sulfur protein adrenodoxin function as a short electron transport chain which donates electrons one-at-a-time to adrenal cortex mitochondrial cytochromes P-450. The soluble adrenodoxin acts as a mobile one-electron shuttle, forming a complex first with NADPH-reduced adrenodoxin reductase from which it accepts an electron, then dissociating, and finally reassociating with and donating an electron to the membrane-bound cytochrome P-450 (Fig. 9). Dissociation and reassociation with flavoprotein then allows a second cycle of electron transfers. A complex set of factors govern the sequential protein-protein interactions which comprise this adrenodoxin shuttle mechanism; among these factors, reduction of the iron sulfur center by the flavin weakens the adrenodoxinadrenodoxin reductase interaction, thus promoting dissociation of this complex to yield free reduced adrenodoxin. Substrate (cholesterol) binding to cytochrome P-450scc both promotes the binding of the free adrenodoxin to the cytochrome, and alters the oxidation-reduction potential of the heme so as to favor reduction by adrenodoxin. The cholesterol binding site on cytochrome P-450scc appears to be in direct communication with the hydrophobic phospholipid milieu in which this substrate is dissolved. Specific effects of both phospholipid headgroups and fatty acyl side-chains regulate the interaction of cholesterol with its binding side. Cardiolipin is an extremely potent positive effector for cholesterol binding, and evidence supports the existence of a specific effector lipid binding site on cytochrome P.450scc to which this phospho-lipid binds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号