首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1466篇
  免费   126篇
  国内免费   1篇
  1593篇
  2023年   9篇
  2022年   16篇
  2021年   38篇
  2020年   32篇
  2019年   41篇
  2018年   52篇
  2017年   28篇
  2016年   43篇
  2015年   84篇
  2014年   77篇
  2013年   105篇
  2012年   96篇
  2011年   127篇
  2010年   74篇
  2009年   63篇
  2008年   81篇
  2007年   112篇
  2006年   85篇
  2005年   65篇
  2004年   86篇
  2003年   59篇
  2002年   60篇
  2001年   12篇
  2000年   12篇
  1999年   17篇
  1998年   18篇
  1997年   10篇
  1996年   11篇
  1995年   5篇
  1994年   8篇
  1993年   6篇
  1992年   8篇
  1991年   6篇
  1990年   7篇
  1989年   4篇
  1988年   5篇
  1986年   2篇
  1985年   7篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
  1959年   1篇
  1957年   1篇
  1934年   1篇
  1930年   1篇
  1927年   1篇
  1924年   2篇
排序方式: 共有1593条查询结果,搜索用时 15 毫秒
31.
32.
The effect of pectic oligomers (OG) on ethylene biosynthesis, electrolyte leakage (EL), and CO(2) production was studied in discs excised from zucchini fruit (Cucurbita pepo L.) and stored at 20 or 2.5 degrees C. At 20 degrees C, OG enhanced ethylene biosynthesis and had a transient effect on decreasing EL, but showed little effect on respiratory rate; both the amount and size of the oligomer were important in changing both ethylene synthesis and EL. At 2.5 degrees C, OG increased both ethylene biosynthesis and respiratory rate with a maximum effect at 100 microg of oligomer and peaking at 6 h; shorter oligomers demonstrated an even greater effect on ethylene biosynthesis, but differences were smaller in respiratory rate. EL at 2.5 degrees C was affected most by 1 microg of OG and by monomeric galacturonic acid, with transient increases that peaked at 8 h. We suggest a signaling role for OG in the early steps of cold acclimation or chilling injury.  相似文献   
33.
Zymosterol is located in the plasma membrane of cultured human fibroblasts   总被引:2,自引:0,他引:2  
Zymosterol (5 alpha-cholesta-8(9),24-dien-3 beta-ol) comprised a negligible fraction of the mass of sterol in cultured human fibroblasts but was well labeled biosynthetically with radioactive acetate. Treatment of cells with triparanol, a potent inhibitor of sterol delta 24-reductase, led to a marked increase in labeled zymosterol while its mass rose to 1 mol% of total sterol. All of this sterol could be chased into cholesterol. Furthermore, cell homogenates converted exogenous radiolabeled zymosterol to cholesterol. Three lines of evidence suggested that biosynthetically labeled zymosterol was associated with the plasma membrane. 1) About 80% of radiolabeled zymosterol was oxidized by the impermeant enzyme, cholesterol oxidase, in glutaraldehyde-fixed intact cells. 2) Sucrose density gradient analysis of homogenates showed that the equilibrium buoyant density profile of newly synthesized zymosterol was identical with that of the plasma membrane. 3) Newly synthesized zymosterol was transferred as readily from fixed intact fibroblasts to exogenous acceptors as was cholesterol. Given that cholesterol is synthesized within the cell, it is unclear why most of the zymosterol is in the plasma membrane. The pathway of cholesterol biosynthesis may compel zymosterol to flux through the plasma membrane. Alternatively, plasma membrane zymosterol may represent a separate pool, in equilibrium with the zymosterol in the intracellular biosynthetic pool.  相似文献   
34.
The Diplostomida Olson, Cribb, Tkach, Bray & Littlewood, 2003 is the less diverse order of the two orders within the subclass Digenea Carus, 1863 and is currently classified into three superfamilies, i.e. Brachylaimoidea Joyeux & Foley, 1930, Diplostomoidea Poirier, 1886, and Schistosomatoidea Stiles & Hassall, 1898. Although the suprageneric-level relationships have been elucidated with the use of molecular markers, the lack of representation of some groups obscure the phylogenetic relationships among families, rendering the classification unstable. Here, we tested the phylogenetic position of the family Proterodiplostomidae Dubois, 1936 based on partial 28S rDNA and complete 18S rDNA sequences for Crocodilicola pseudostoma (Willemoes-Suhm, 1870), a crocodile parasite that has been found as a progenetic metacercaria parasitising the pale catfish Rhamdia guatemalensis (Günther) in Mexico and in other siluruforms in the Neotropics. We augmented the representation of the species, genera and families within the Diplostomida, including mostly representatives of the superfamily Diplostomoidea, and assembled a dataset that contains 49 species for the 28S rRNA gene, and 45 species for the 18S rRNA gene. Additionally, we explored the phylogenetic signal of the mitochondrial gene cox1 in reconstructing the phylogenetic relationships of selected members of the superfamily. Our analyses showed that the family Proterodiplostomidae is the sister taxon to the paraphyletic Diplostomidae Poirier, 1886 and Strigeidae Railliet, 1919, with Cyathocotylidae Mühling, 1898 + Brauninidae Wolf, 1903 as their sister group. Analysis of concatenated 18S + 28S sequences revealed the Liolopidae Odhner, 1912 as the basal group of the superfamily Diplostomoidea, although analyses of independent datasets showed that the position of this family remains uncertain. Analysis based on cox1 unequivocally resolved the Proterodiplostomidae as the sister taxon to the Diplostomidae and Strigeidae, although the Cyathocotylidae was nested in a different clade, along with brachylaimoids and schistosomatoids.  相似文献   
35.
Prospective midbrain and cerebellum formation are coordinated by FGF ligands produced by the isthmic organizer. Previous studies have suggested that midbrain and cerebellum development require different levels of FGF signaling. However, little is known about the extent to which specific regions within these two parts of the brain differ in their requirement for FGF signaling during embryogenesis. Here, we have explored the effects of inhibiting FGF signaling within the embryonic mouse midbrain (mesencephalon) and cerebellum (rhombomere 1) by misexpressing sprouty2 (Spry2) from an early stage. We show that such Spry2 misexpression moderately reduces FGF signaling, and that this reduction causes cell death in the anterior mesencephalon, the region furthest from the source of FGF ligands. Interestingly, the remaining mesencephalon cells develop into anterior midbrain, indicating that a low level of FGF signaling is sufficient to promote only anterior midbrain development. Spry2 misexpression also affects development of the vermis, the part of the cerebellum that spans the midline. We found that, whereas misexpression of Spry2 alone caused loss of the anterior vermis, reducing FGF signaling further, by decreasing Fgf8 gene dose, resulted in loss of the entire vermis. Our data suggest that cell death is not responsible for vermis loss, but rather that it fails to develop because reducing FGF signaling perturbs the balance between vermis and roof plate development in rhombomere 1. We suggest a molecular explanation for this phenomenon by providing evidence that FGF signaling functions to inhibit the BMP signaling that promotes roof plate development.  相似文献   
36.
Conventional kinesin is a major microtubule-based motor protein responsible for anterograde transport of various membrane-bounded organelles (MBO) along axons. Structurally, this molecular motor protein is a tetrameric complex composed of two heavy (kinesin-1) chains and two light chain (KLC) subunits. The products of three kinesin-1 (kinesin-1A, -1B, and -1C, formerly KIF5A, -B, and -C) and two KLC (KLC1, KLC2) genes are expressed in mammalian nervous tissue, but the functional significance of this subunit heterogeneity remains unknown. In this work, we examine all possible combinations among conventional kinesin subunits in brain tissue. In sharp contrast with previous reports, immunoprecipitation experiments here demonstrate that conventional kinesin holoenzymes are formed of kinesin-1 homodimers. Similar experiments confirmed previous findings of KLC homodimerization. Additionally, no specificity was found in the interaction between kinesin-1s and KLCs, suggesting the existence of six variant forms of conventional kinesin, as defined by their gene product composition. Subcellular fractionation studies indicate that such variants associate with biochemically different MBOs and further suggest a role of kinesin-1s in the targeting of conventional kinesin holoenzymes to specific MBO cargoes. Taken together, our data address the combination of subunits that characterize endogenous conventional kinesin. Findings on the composition and subunit organization of conventional kinesin as described here provide a molecular basis for the regulation of axonal transport and delivery of selected MBOs to discrete subcellular locations.  相似文献   
37.

Background  

Tectonic, volcanic and climatic events that produce changes in hydrographic systems are the main causes of diversification and speciation of freshwater fishes. Elucidate the evolutionary history of freshwater fishes permits to infer theories on the biotic and geological evolution of a region, which can further be applied to understand processes of population divergence, speciation and for conservation purposes. The freshwater ecosystems in Central Mexico are characterized by their genesis dynamism, destruction, and compartmentalization induced by intense geologic activity and climatic changes since the early Miocene. The endangered goodeid Zoogoneticus quitzeoensis is widely distributed across Central México, thus making it a good model for phylogeographic analyses in this area.  相似文献   
38.
Plant and Soil - The genus Denhamia(Celastraceae) includes fifteen Australian species, many of which have a propensity for manganese (Mn) (hyper)accumulation. Among the key aims of this study were...  相似文献   
39.
Trypanosoma cruzi (T. cruzi) infection produces an intense inflammatory response which is critical for the control of the evolution of Chagas’ disease. Interleukin (IL)-10 is one of the most important anti-inflammatory cytokines identified as modulator of the inflammatory reaction. This work shows that exogenous addition of IL-10 inhibited ERK1/2 and NF-κB activation and reduced inducible nitric oxide synthase (NOS2), metalloprotease (MMP) -9 and MMP-2 expression and activities, as well as tumour necrosis factor (TNF)-α and interleukin (IL)-6 expression, in T. cruzi-infected cardiomyocytes. We found that T. cruzi and IL-10 promote STAT3 phosphorylation and up-regulate the expression of suppressor of cytokine signalling (SOCS)-3 thereby preventing NF-κB nuclear translocation and ERK1/2 phosphorylation. Specific knockdown of SOCS-3 by small interfering RNA (siRNA) impeded the IL-10-mediated inhibition of NF-κB and ERK1/2 activation. As a result, the levels of studied pro-inflammatory mediators were restored in infected cardiomyocytes. Our study reports the first evidence that T. cruzi up- regulates SOCS-3 expression and highlights the relevance of IL-10 in the modulation of pro-inflammatory response of cardiomyocytes in Chagas’ disease.  相似文献   
40.
The melanization reaction promoted by the prophenoloxidase-activating system is an essential defense response in invertebrates subjected to regulatory mechanisms that are still not fully understood. We report here the finding and characterization of a novel trypsin inhibitor, named panulirin, isolated from the hemocytes of the spiny lobster Panulirus argus with regulatory functions on the melanization cascade. Panulirin is a cationic peptide (pI 9.5) composed of 48 amino acid residues (5.3 kDa), with six cysteine residues forming disulfide bridges. Its primary sequence was determined by combining Edman degradation/N-terminal sequencing and electrospray ionization-MS/MS spectrometry. The low amino acid sequence similarity with known proteins indicates that it represents a new family of peptidase inhibitors. Panulirin is a competitive and reversible tight-binding inhibitor of trypsin (Ki = 8.6 nm) with a notable specificity because it does not inhibit serine peptidases such as subtilisin, elastase, chymotrypsin, thrombin, and plasmin. The removal of panulirin from the lobster hemocyte lysate leads to an increase in phenoloxidase response to LPS. Likewise, the addition of increasing concentrations of panulirin to a lobster hemocyte lysate, previously depleted of trypsin-inhibitory activity, decreased the phenoloxidase response to LPS in a concentration-dependent fashion. These results indicate that panulirin is implicated in the regulation of the melanization cascade in P. argus by inhibiting peptidase(s) in the pathway toward the activation of the prophenoloxidase enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号