首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1366篇
  免费   124篇
  国内免费   1篇
  1491篇
  2023年   9篇
  2022年   15篇
  2021年   33篇
  2020年   26篇
  2019年   36篇
  2018年   46篇
  2017年   27篇
  2016年   41篇
  2015年   79篇
  2014年   74篇
  2013年   97篇
  2012年   91篇
  2011年   123篇
  2010年   73篇
  2009年   61篇
  2008年   77篇
  2007年   107篇
  2006年   82篇
  2005年   62篇
  2004年   82篇
  2003年   57篇
  2002年   59篇
  2001年   12篇
  2000年   11篇
  1999年   16篇
  1998年   18篇
  1997年   10篇
  1996年   10篇
  1995年   3篇
  1994年   8篇
  1993年   4篇
  1992年   5篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1985年   5篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
  1959年   1篇
  1957年   1篇
  1934年   1篇
  1930年   1篇
  1927年   1篇
  1924年   2篇
排序方式: 共有1491条查询结果,搜索用时 15 毫秒
971.
Regulated secretion is a fundamental process underlying the function of many cell types. In particular, acrosomal exocytosis in mammalian sperm is essential for egg fertilization. Regulated secretion requires SNARE proteins and, in neurons, also synaptotagmin I and complexin. Recent reports suggest that complexin imposes a fusion block that is released by Ca(2+) and synaptotagmin I. However, no direct evidence for this model in secreting cells has been provided and whether this complexin/synaptotagmin interplay functions in other types of secretion is unknown. In this report, we show that the C2B domain of synaptotagmin VI and an anti-complexin antibody blocked the formation of trans SNARE complexes in permeabilized human sperm, and that this effect was reversed by adding complexin. In contrast, an excess of complexin stopped exocytosis at a later step, when SNAREs were assembled in loose trans complexes. Interestingly, this blockage was released by the addition of the synaptotagmin VI C2B domain in the presence of Ca(2+). We have previously demonstrated that the activity of this domain is regulated by protein kinase C-mediated phosphorylation. Here, we show that a phosphomimetic mutation in the polybasic region of the C2B domain strongly affects its Ca(2+) and phospholipids binding properties. Importantly, this mutation completely abrogates its ability to rescue the complexin block. Our results show that the functional interplay between complexin and synaptotagmin has a central role in a physiological secretion event, and that this interplay can be modulated by phosphorylation of the C2B domain.  相似文献   
972.
Senescence is a general antiproliferative program that avoids the expansion of cells bearing oncogenic mutations. We found that constitutively active STAT5A (ca-STAT5A) can induce a p53- and Rb-dependent cellular senescence response. However, ca-STAT5A did not induce p21 and p16(INK4a), which are responsible for inhibiting cyclin-dependent protein kinases and engaging the Rb pathway during the senescence response to oncogenic ras. Intriguingly, ca-STAT5A led to a down-regulation of Myc and Myc targets, including CDK4, a negative regulator of Rb. The down-regulation of Myc was in part proteasome-dependent and correlated with its localization to promyelocytic leukemia bodies, which were found to be highly abundant during STAT5-induced senescence. Introduction of CDK4 or Myc bypassed STAT5A-induced senescence in cells in which p53 was also inactivated. These results uncover a novel mechanism to engage the Rb pathway in oncogene-induced senescence and indicate the existence of oncogene-specific pathways that regulate senescence.  相似文献   
973.
N-Acetylglucosaminyltransferase V (GnT-V) is an enzyme involved in the biosynthesis of asparagine-linked oligosaccharides. It is responsible for the transfer of N-acetylglucosamine (GlcNAc) from the nucleotide sugar donor, uridine 5'-diphospho-N-acetylglucosamine (UDP-GlcNAc), to the 6 position of the alpha-1-6 linked Man residue in N-linked oligosaccharide core structures. GnT-V up-regulation has been linked to increased cancer invasiveness and metastasis and, appropriately, targeted for drug development. However, drug design is impeded by the lack of structural information on the protein and the way in which substrates are bound. Even though the catalytic domain of this type II membrane protein can be expressed in mammalian cell culture, obtaining structural information has proved challenging due to the size of the catalytic domain (95 kDa) and its required glycosylation. Here, we present an experimental approach to obtaining information on structural characteristics of the active site of GnT-V through the investigation of the bound conformation and relative placement of its ligands, UDP-GlcNAc and beta-D-GlcpNAc-(1-->2)-alpha-D-Manp-(1-->6)-beta-D-GlcpOOctyl. Nuclear magnetic resonance (NMR) spectroscopy experiments, inducing transferred nuclear Overhauser effect (trNOE) and saturation transfer difference (STD) experiments, were used to characterize the ligand conformation and ligand-protein contact surfaces. In addition, a novel paramagnetic relaxation enhancement experiment using a spin-labeled ligand analogue, 5'-diphospho-4-O-2,2,6,6-tetramethylpiperidine 1-oxyl (UDP-TEMPO), was used to characterize the relative orientation of the two bound ligands. The structural information obtained for the substrates in the active site of GnT-V can be useful in the design of inhibitors for GnT-V.  相似文献   
974.
We designed a method termed Telospot to discover and characterize telomerase modulators as anticancer drugs or chemical biology tools. Telospot is based on a highly efficient human telomerase expression system and the detection of telomerase DNA reaction products in macroarray format. Telospot offers a highly scalable, cost- and time-effective alternative to presently available telomerase assays, which are limited by the requirement for PCR, telomerase purification or technologies not amenable to high throughput.  相似文献   
975.
From December 2012 to November 2014, 267 fish belonging to the family Profundulidae (representing nine of the 11 species of the genus Profundulus) were collected in 26 localities of Middle-America, across southern Mexico, Guatemala, and Honduras, comprising the distribution range of the genus, and analyzed for helminth parasites. Additionally, a database with all ten available published accounts of the helminth parasite fauna of this genus (the only genus within the family) was assembled. Based on both sources of information, a checklist containing all the records was compiled as a tool to address future questions in the areas of evolutionary biology, biogeography, ecology and phylogeography of this host-parasite association. The helminth parasite fauna of this fish group consists of 20 nominal species, classified in 17 genera and 14 families. It includes six species of adult digeneans, five metacercariae, two monogeneans, one adult cestode, three adult nematodes and three larval nematodes. The profundulid fishes are parasitized by a specialized group of helminth species (e.g. Paracreptotrema blancoi sensu Salgado-Maldonado et al. (2011b), Paracreptotrema profundulusi Salgado-Maldonado, Caspeta-Mandujano & Martínez Ramírez, 2011, Phyllodistomum spinopapillatum Pérez-Ponce de León, Pinacho-Pinacho, Mendoza-Garfias & García-Varela, 2015, Spinitectus humbertoi Mandujano-Caspeta & Moravec, 2000, Spinitectus mariaisabelae Caspeta-Mandujano Cabañas-Carranza & Salgado-Maldonado, 2007 and Rhabdochona salgadoi Mandujano-Caspeta & Moravec, 2000), representing the core helminth fauna that are not shared with other Middle-American fish species.  相似文献   
976.
Two new species of Euptychia Hübner, 1818 are described from the upper Amazon basin: Euptychia attenboroughi Neild, Nakahara, Fratello & Le Crom, sp. n. (type locality: Amazonas, Venezuela), and Euptychia sophiae Zacca, Nakahara, Dolibaina & Dias, sp. n. (type locality: Acre, Brazil). Their unusual facies prompted molecular and phylogenetic analyses of one of the species resulting in support for their classification in monophyletic Euptychia. Diagnostic characters for the two species are presented based on wing morphology, wing pattern, presence of androconial patches on the hindwing, and genitalia. Our results indicate that the projection of the tegumen above the uncus, previously considered a synapomorphy for Euptychia, is not shared by all species in the genus. The adults and their genitalia are documented, and distribution data and a map are provided.  相似文献   
977.
Biotic resistance has been invoked as a major barrier to woody species invasion, although the role of resident generalist consumers and their interaction with seed availability in a local community has received little attention. We assessed tree seed consumption by rodents under two different scenarios: (i) We documented in field spatio‐temporal patterns of seed predation by native rodents on two exotic tree species, Gleditsia triacanthos or ‘honey locust’ and Robinia pseudoacacia or ‘white locust’ (family Leguminosae), in five grassland habitats of the Inland Pampa, Argentina. (ii) We conducted laboratory feeding trials to evaluate tree seed consumption in the presence (cafeteria‐style feeding trials) and in the absence (non‐choice feeding trials) of alternative food supplies. Seed predation was generally higher for Robinia than for Gleditsia seeds, both in field and laboratory conditions. For both tree species, seed predation varied between habitats and seasons and was higher in the native tussock grassland than in the remaining studied communities, whereas the crop field showed the lowest levels of consumption along with the absence of captured rodents. Seed consumption of Gleditsia and Robinia among the four grassland communities (which did not differ in rodent abundance) was negatively associated with the availability of alternative food. Laboratory feeding trials showed a higher consumption of Gleditsia seeds in the non‐choice than in the cafeteria‐style feeding trials, while the consumption of Robinia seeds did not differ in the absence or presence of alternative seeds. These patterns indicate that the contribution of resident granivores to invasion resistance might depend on colonizer species identity, recipient community type and season of the year. We suggest that rodent preferences for different invader seeds will interact with the availability of alternative food in the local habitat in influencing the amount of predator‐mediated biotic resistance to invasion.  相似文献   
978.
979.
BackgroundOver the last few years, momentum has gathered around the feasibility and opportunity of eliminating gambiense human African trypanosomiasis (g-HAT). Under the leadership of the World Health Organization (WHO), a large coalition of stakeholders is now committed to achieving this goal. A roadmap has been laid out, and indicators and milestones have been defined to monitor the progress of the elimination of g-HAT as a public health problem by 2020. Subsequently, a more ambitious objective was set for 2030: to stop disease transmission. This paper provides a situational update to 2012 for a number of indicators of elimination: number of cases annually reported, geographic distribution of the disease and areas and populations at different levels of risk.ResultsComparing the 5-year periods 2003-2007 and 2008-2012, the area at high or very high risk of g-HAT shrank by 60%, while the area at moderate risk decreased by 22%. These are the areas where g-HAT is still to be considered a public health problem (i.e. > 1 HAT reported case per 10,000 people per annum). This contraction of at-risk areas corresponds to a reduction of 57% for the population at high or very high risk (from 4.1 to 1.8 million), and 20% for moderate risk (from 14.0 to 11.3 million).DiscussionImproved data completeness and accuracy of the Atlas of HAT enhanced our capacity to monitor the progress towards the elimination of g-HAT. The trends in the selected indicators suggest that, in recent years, progress has been steady and in line with the elimination goal laid out in the WHO roadmap on neglected tropical diseases.  相似文献   
980.
Growth of tissues is highly reproducible; yet, growth of individual cells in a tissue is highly variable, and neighboring cells can grow at different rates. We analyzed the growth of epidermal cell lineages in the Arabidopsis (Arabidopsis thaliana) sepal to determine how the growth curves of individual cell lineages relate to one another in a developing tissue. To identify underlying growth trends, we developed a continuous displacement field to predict spatially averaged growth rates. We showed that this displacement field accurately describes the growth of sepal cell lineages and reveals underlying trends within the variability of in vivo cellular growth. We found that the tissue, individual cell lineages, and cell walls all exhibit growth rates that are initially low, accelerate to a maximum, and decrease again. Accordingly, these growth curves can be represented by sigmoid functions. We examined the relationships among the cell lineage growth curves and surprisingly found that all lineages reach the same maximum growth rate relative to their size. However, the cell lineages are not synchronized; each cell lineage reaches this same maximum relative growth rate but at different times. The heterogeneity in observed growth results from shifting the same underlying sigmoid curve in time and scaling by size. Thus, despite the variability in growth observed in our study and others, individual cell lineages in the developing sepal follow similarly shaped growth curves.Cells undergo multiple rounds of growth and division to create reproducible tissues. In some plant tissues, such as expanding cotyledons, reproducibility can occur on a cellular level during specific intervals of development, where cotyledon cells exhibit uniform cellular growth (Zhang et al., 2011). However, several studies on cell division and growth in other developing plant tissues have demonstrated that plant cells exhibit considerable cell-to-cell variability during development (Meyer and Roeder, 2014). For example, in both the Arabidopsis (Arabidopsis thaliana) meristem and leaf epidermis, cells show spatiotemporal variation in individual cell growth rates (GRs; Asl et al., 2011; Elsner et al., 2012; Kierzkowski et al., 2012; Uyttewaal et al., 2012). Furthermore, cell divisions have been observed with marked randomness in their timing and orientation (Roeder et al., 2010; Besson and Dumais, 2011; Roeder, 2012). In this study, we identify a hidden, underlying pattern in the seemingly random GR (Box 1) of cells during the formation of sepals in Arabidopsis.Open in a separate windowBox 1.Definitions of GR terms. (For details on the calculations, see “Materials and Methods.”)Plant cell growth is defined as an increase in cell size due to an irreversible expansion of the cell wall. Neighboring cells physically accommodate one another during plant growth because their cell walls are glued together with a pectin-rich middle lamella, which prevents cell mobility. The cell wall is a thin, stiff layer composed of a polymer matrix including cellulose, hemicellulose, and pectin (Somerville et al., 2004; Cosgrove, 2005). Plant cells change their size and shape by modifying their turgor pressure and/or the mechanical properties of their walls, such as elasticity, plasticity, and extensibility. Growing plant cells exert forces on their neighbors through their walls, and cell wall stresses created by these forces feed back to alter the growth anisotropy (Hamant et al., 2008; Sampathkumar et al., 2014). Although these feedbacks can coordinate growth, they may also amplify differences in growth between neighboring cells (Uyttewaal et al., 2012).Two competing computational models have proposed explanations of the cellular heterogeneity observed in growing tissues by making different assumptions about how cells grow. In the first, it is assumed that relative growth rates (RGRs) of all cells are uniform in space and time, whereas variation in the timing of division causes the heterogeneity of cell sizes (Roeder et al., 2010). This model suggests that cell divisions cut the sepal into semiindependent cells, which grow uniformly within the expanding organ (Kaplan and Hagemann, 1991). The second model postulates the reverse process: timing of cell division is uniform, but cellular growth is variable and depends on the size of the cell (Asl et al., 2011). This model suggests that cells are autonomous. Currently, there is biological evidence for both models. Variability in cell division timing is observed in sepals and meristems, whereas variability in cellular GRs has been observed in leaves and meristem cells (Reddy et al., 2004; Roeder et al., 2010; Asl et al., 2011; Elsner et al., 2012; Kierzkowski et al., 2012; Uyttewaal et al., 2012). Thus, the debate on how the growth of individual cells within an organ relates to one another remains unresolved.The identification of underlying patterns in noisy cellular growth processes is challenging. Technical difficulties include the capability for cellular-resolution imaging of the tissue at sufficiently small time intervals. Previous studies (Zhang et al., 2011; Elsner et al., 2012; Kierzkowski et al., 2012) did not image and track individual cells, or they had a coarse time resolution, with 11- to 48-h intervals between images, which may have hidden important temporal dynamics. We studied growing cells in the Arabidopsis sepal, which allows for live imaging with cellular resolution at 6-h intervals (Roeder et al., 2010). The sepal is the leaf-like outermost floral organ of Arabidopsis (Fig. 1) with four sepals of stereotypical size produced per flower. Its accessibility for live imaging makes the sepal an excellent system for studying organogenesis (Roeder et al., 2010, 2011, 2012; Qu et al., 2014). Sepals exhibit high cellular variability in the timing of division and endoreduplication, an alternative cell cycle in which a cell replicates its DNA but fails to divide (Roeder et al., 2010). Furthermore, quantifying cell growth in sepals may shed light on growth mechanisms of other plant organs, such as leaves (Poethig and Sussex, 1985; Roeder et al., 2010).Open in a separate windowFigure 1.Diverse sizes of Arabidopsis sepal cells. A, Four sepals (s) are the outermost green leaf-like floral organs in Arabidopsis. B and C, Scanning electron micrographs of a mature Arabidopsis sepal show that the outer epidermal cells have a wide range of sizes. Asterisks mark some of the largest cells (giant cells) that can span 1/4 the length of the sepal. Scale = 100 µm.Another key challenge in analyzing cellular growth is the identification of trends in noisy data. Inaccuracies in data acquisition, such as segmentation errors, and noisy growth of individual cells can hide meaningful spatiotemporal trends in growth. GRs measured over longer time intervals will have reduced noise, but they may also obscure important temporal dynamics. Alternatively, previous studies have examined growth of the whole organ or its subregions to avoid cellular noise (De Veylder et al., 2001; Mündermann et al., 2005; Rolland-Lagan et al., 2005, 2014; Kuchen et al., 2012; Remmler and Rolland-Lagan, 2012). However, precise cellular patterns are not resolved. In our study, we use cellular resolution data to define spatially averaged kinematics while keeping the full temporal resolution to identify course-grained spatial trends in the dynamics of cellular growth (Box 1).We analyze the relationships among the growth of individual cell lineages in a developing Arabidopsis sepal by live imaging and computational analyses. We have developed continuous low-order displacement fields to represent the spatially averaged kinematics of the sepal (Box 1). We find that the growth of the tissue surface area, cell lineage area, and wall length follows S curves, suggesting that their GRs vary over time. Additionally, we find that there is a linear correlation between the maximum GR (i.e. size increase per hour) and the size of the cell. We furthermore find that each sepal cell lineage reaches the same maximum RGR (i.e. GR divided by size). However, each cell reaches the maximum RGR at a different time during its development, generating the observed heterogeneity. Thus, we find underlying similarities in the growth curves of sepal cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号