首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3076篇
  免费   282篇
  2021年   37篇
  2020年   13篇
  2019年   26篇
  2018年   35篇
  2017年   29篇
  2016年   53篇
  2015年   90篇
  2014年   140篇
  2013年   166篇
  2012年   203篇
  2011年   194篇
  2010年   126篇
  2009年   123篇
  2008年   156篇
  2007年   168篇
  2006年   182篇
  2005年   174篇
  2004年   167篇
  2003年   144篇
  2002年   166篇
  2001年   32篇
  2000年   32篇
  1999年   54篇
  1998年   61篇
  1997年   47篇
  1996年   46篇
  1995年   42篇
  1994年   34篇
  1993年   39篇
  1992年   48篇
  1991年   43篇
  1990年   40篇
  1989年   33篇
  1988年   39篇
  1987年   18篇
  1986年   18篇
  1985年   31篇
  1984年   35篇
  1983年   22篇
  1982年   33篇
  1981年   26篇
  1980年   24篇
  1979年   16篇
  1978年   18篇
  1977年   16篇
  1976年   11篇
  1975年   9篇
  1974年   10篇
  1973年   12篇
  1972年   10篇
排序方式: 共有3358条查询结果,搜索用时 15 毫秒
101.
102.
103.
This study presents direct experimental evidence for assessing the electrostatic and non-electrostatic contributions of proteoglycans to the compressive equilibrium modulus of bovine articular cartilage. Immature and mature bovine cartilage samples were tested in unconfined compression and their depth-dependent equilibrium compressive modulus was determined using strain measurements with digital image correlation analysis. The electrostatic contribution was assessed by testing samples in isotonic and hypertonic saline; the combined contribution was assessed by testing untreated and proteoglycan-depleted samples.Though it is well recognized that proteoglycans contribute significantly to the compressive stiffness of cartilage, results demonstrate that the combined electrostatic and non-electrostatic contributions may add up to more than 98% of the modulus, a magnitude not previously appreciated. Of this contribution, about two thirds arises from electrostatic effects. The compressive modulus of the proteoglycan-depleted cartilage matrix may be as low as 3 kPa, representing less than 2% of the normal tissue modulus; experimental evidence also confirms that the collagen matrix in digested cartilage may buckle under compressive strains, resulting in crimping patterns. Thus, it is reasonable to model the collagen as a fibrillar matrix that can sustain only tension. This study also demonstrates that residual stresses in cartilage do not arise exclusively from proteoglycans, since cartilage remains curled relative to its in situ geometry even after proteoglycan depletion. These increased insights on the structure–function relationships of cartilage can lead to improved constitutive models and a better understanding of the response of cartilage to physiological loading conditions.  相似文献   
104.
Cathelicidins such as the human 37-amino acid peptide (LL-37) are peptides that not only potently kill microbes but also trigger inflammation by enabling immune recognition of endogenous nucleic acids. Here, a detailed structure–function analysis of LL-37 was performed to understand the details of this process. Alanine scanning of 34-amino acid peptide (LL-34) showed that some variants displayed increased antimicrobial activity against Staphylococcus aureus and group A Streptococcus. In contrast, different substitutions clustered on the hydrophobic face of the LL-34 alpha helix inhibited the ability of those variants to promote type 1 interferon expression in response to U1 RNA or to present U1 to the scavenger receptor (SR) B1 on the keratinocyte cell surface. Small-angle X-ray scattering experiments of the LL-34 variants LL-34, F5A, I24A, and L31A demonstrated that these peptides form cognate supramolecular structures with U1 characterized by inter-dsRNA spacings of approximately 3.5 nm, a range that has been previously shown to activate toll-like receptor 3 by the parent peptide LL-37. Therefore, while alanine substitutions on the hydrophobic face of LL-34 led to loss of binding to SRs and the complete loss of autoinflammatory responses in epithelial and endothelial cells, they did not inhibit the ability to organize with U1 RNA in solution to associate with toll-like receptor 3. These observations advance our understanding of how cathelicidin mediates the process of innate immune self-recognition to enable inert nucleic acids to trigger inflammation. We introduce the term “innate immune vetting” to describe the capacity of peptides such as LL-37 to enable certain nucleic acids to become an inflammatory stimulus through SR binding prior to cell internalization.  相似文献   
105.
We are interested in studying the genesis of a very common pathology: the human inguinal hernia. How the human inguinal hernia appears is not definitively clear, but it is accepted that it is caused by a combination of mechanical and biochemical alterations, and that muscular simulation plays an important role in this. This study proposes a model to explain how some physical parameters affect the ability to simulate the region dynamically and how these parameters are involved in generating inguinal hernias. We are particularly interested in understanding the mechanical alterations in the inguinal region because little is known about them or how they behave dynamically. Our model corroborates the most important theories regarding the generation of inguinal hernias and is an initial approach to numerically evaluating this affection.  相似文献   
106.
107.
Abstract

1,5-Anhydrohexitol congeners of AZT, D4T and DDC were synthesized. These compounds did not show anti-HIV activity.

  相似文献   
108.
Biological control systems are integral to New Zealand’s success as a nation reliant on exporting quality agricultural, forestry and horticultural products. The likely impacts of climate change projections to 2090 on one weed and four invertebrate management systems in differing production sectors were investigated, and it was concluded that most natural enemies will track the changing distributions of their hosts. The key climate change challenges identified were: disparities in natural enemy capability to change distribution, lack of frosts leading to emergence of new pests and additional pest generations, non-target impacts from range and temperature changes, increased disruptions caused by extreme weather events, disruption of host-natural enemy synchrony, and insufficient genetic diversity to allow evolutionary adaptation. Five classical biological control systems based on the introduced species Longitarsus jacobaeae, Cotesia kazak, Aphelinus mali, Microctonus aethiopoides and Microctonus hyperodae are discussed in more detail.  相似文献   
109.
In the course of evolution, the genomes of grasses have maintained an observable degree of gene order conservation. The information available for already sequenced genomes can be used to predict the gene order of nonsequenced species by means of comparative colinearity studies. The “Wheat Zapper” application presented here performs on-demand colinearity analysis between wheat, rice, Sorghum, and Brachypodium in a simple, time efficient, and flexible manner. This application was specifically designed to provide plant scientists with a set of tools, comprising not only synteny inference, but also automated primer design, intron/exon boundaries prediction, visual representation using the graphic tool Circos 0.53, and the possibility of downloading FASTA sequences for downstream applications. Quality of the “Wheat Zapper” prediction was confirmed against the genome of maize, with good correlation (r?>?0.83) observed between the gene order predicted on the basis of synteny and their actual position on the genome. Further, the accuracy of “Wheat Zapper” was calculated at 0.65 considering the “Genome Zipper” application as the “gold” standard. The differences between these two tools are amply discussed, making the point that “Wheat Zapper” is an accurate and reliable on-demand tool that is sure to benefit the cereal scientific community. The Wheat Zapper is available at http://wge.ndsu.nodak.edu/wheatzapper/.  相似文献   
110.
Intestinal microfold (M) cells possess a high transcytosis capacity and are able to transport a broad range of materials including particulate antigens, soluble macromolecules, and pathogens from the intestinal lumen to inductive sites of the mucosal immune system. M cells are also the primary pathway for delivery of secretory IgA (SIgA) to the gut-associated lymphoid tissue. However, although the consequences of SIgA uptake by M cells are now well known and described, the mechanisms whereby SIgA is selectively bound and taken up remain poorly understood. Here we first demonstrate that both the Cα1 region and glycosylation, more particularly sialic acid residues, are involved in M cell–mediated reverse transcytosis. Second, we found that SIgA is taken up by M cells via the Dectin-1 receptor, with the possible involvement of Siglec-5 acting as a co-receptor. Third, we establish that transcytosed SIgA is taken up by mucosal CX3CR1+ dendritic cells (DCs) via the DC-SIGN receptor. Fourth, we show that mucosal and systemic antibody responses against the HIV p24-SIgA complexes administered orally is strictly dependent on the expression of Dectin-1. Having deciphered the mechanisms leading to specific targeting of SIgA-based Ag complexes paves the way to the use of such a vehicle for mucosal vaccination against various infectious diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号